Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 8: 671, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28936181

RESUMO

Transmembrane protein 184A (TMEM184A) was recently identified as the heparin receptor in vascular cells. Heparin binds specifically to TMEM184A and induces anti-proliferative signaling in vitro. Though it is highly conserved, the physiological function of TMEM184A remains unknown. The objective of this study was to investigate the expression and effects on vascular regeneration of TMEM184A using the adult zebrafish regenerating caudal fin as an in vivo model. Here, we show that Tmem184a is expressed in vascular endothelial cells (ECs) of mature and regenerating zebrafish fins. Transient morpholino (MO)-mediated knockdown of Tmem184a using two validated MOs results in tangled regenerating vessels that do not grow outward and limit normal overall fin regeneration. A significant increase in EC proliferation is observed. Consistent with in vitro work with tissue culture vascular cells, heparin has the opposite effect and decreases EC proliferation which also hinders overall fin regeneration. Collectively, our study suggests that Tmem184a is a novel regulator of angiogenesis.

2.
J Vis Exp ; (120)2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28287514

RESUMO

When novel proteins are identified through affinity-based isolation and bioinformatics analysis, they are often largely uncharacterized. Antibodies against specific peptides within the predicted sequence allow some localization experiments. However, other possible interactions with the antibodies often cannot be excluded. This situation provided an opportunity to develop a set of assays dependent on the protein sequence. Specifically, a construct containing the gene sequence coupled to the GFP coding sequence at the C-terminal end of the protein was obtained and employed for these purposes. Experiments to characterize localization, ligand affinity, and gain of function were originally designed and carried out to confirm the identification of TMEM184A as a heparin receptor1. In addition, the construct can be employed for studies addressing membrane topology questions and detailed protein-ligand interactions. The present report presents a range of experimental protocols based on the GFP-TMEM184A construct expressed in vascular cells that could easily be adapted for other novel proteins.


Assuntos
Bioensaio/métodos , Proteínas de Fluorescência Verde/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/fisiologia , Sequência de Aminoácidos , Proteínas de Membrana , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de DNA , Proteínas de Transporte Vesicular
3.
J Biol Chem ; 291(10): 5342-54, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26769965

RESUMO

Despite the large number of heparin and heparan sulfate binding proteins, the molecular mechanism(s) by which heparin alters vascular cell physiology is not well understood. Studies with vascular smooth muscle cells (VSMCs) indicate a role for induction of dual specificity phosphatase 1 (DUSP1) that decreases ERK activity and results in decreased cell proliferation, which depends on specific heparin binding. The hypothesis that unfractionated heparin functions to decrease inflammatory signal transduction in endothelial cells (ECs) through heparin-induced expression of DUSP1 was tested. In addition, the expectation that the heparin response includes a decrease in cytokine-induced cytoskeletal changes was examined. Heparin pretreatment of ECs resulted in decreased TNFα-induced JNK and p38 activity and downstream target phosphorylation, as identified through Western blotting and immunofluorescence microscopy. Through knockdown strategies, the importance of heparin-induced DUSP1 expression in these effects was confirmed. Quantitative fluorescence microscopy indicated that heparin treatment of ECs reduced TNFα-induced increases in stress fibers. Monoclonal antibodies that mimic heparin-induced changes in VSMCs were employed to support the hypothesis that heparin was functioning through interactions with a receptor. Knockdown of transmembrane protein 184A (TMEM184A) confirmed its involvement in heparin-induced signaling as seen in VSMCs. Therefore, TMEM184A functions as a heparin receptor and mediates anti-inflammatory responses of ECs involving decreased JNK and p38 activity.


Assuntos
Fosfatase 1 de Especificidade Dupla/metabolismo , Células Endoteliais/metabolismo , Heparina/farmacologia , Receptores de Superfície Celular/metabolismo , Fibras de Estresse/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Bovinos , Linhagem Celular , Fosfatase 1 de Especificidade Dupla/genética , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/citologia , Humanos , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ratos , Receptores de Superfície Celular/genética , Proteínas de Transporte Vesicular , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
J Biol Chem ; 291(10): 5326-41, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26769966

RESUMO

Vascular cell responses to exogenous heparin have been documented to include decreased vascular smooth muscle cell proliferation following decreased ERK pathway signaling. However, the molecular mechanism(s) by which heparin interacts with cells to induce those responses has remained unclear. Previously characterized monoclonal antibodies that block heparin binding to vascular cells have been found to mimic heparin effects. In this study, those antibodies were employed to isolate a heparin binding protein. MALDI mass spectrometry data provide evidence that the protein isolated is transmembrane protein 184A (TMEM184A). Commercial antibodies against three separate regions of the TMEM184A human protein were used to identify the TMEM184A protein in vascular smooth muscle cells and endothelial cells. A GFP-TMEM184A construct was employed to determine colocalization with heparin after endocytosis. Knockdown of TMEM184A eliminated the physiological responses to heparin, including effects on ERK pathway activity and BrdU incorporation. Isolated GFP-TMEM184A binds heparin, and overexpression results in additional heparin uptake. Together, these data support the identification of TMEM184A as a heparin receptor in vascular cells.


Assuntos
Heparina/farmacologia , Músculo Liso Vascular/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Humanos , Dados de Sequência Molecular , Músculo Liso Vascular/efeitos dos fármacos , Ligação Proteica , Transporte Proteico , Ratos , Receptores de Superfície Celular/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA