Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 570: 66-74, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25712220

RESUMO

We analyzed the effect of a natural osmolyte, trimethylamine N-oxide (TMAO), on structural properties and conformational stabilities of several proteins under macromolecular crowding conditions by a set of biophysical techniques. We also used the solvent interaction analysis method to look at the peculiarities of the TMAO-protein interactions under crowded conditions. To this end, we analyzed the partitioning of these proteins in TMAO-free and TMAO-containing aqueous two-phase systems (ATPSs). These ATPSs had the same polymer composition of 6.0 wt.% PEG-8000 and 12.0 wt.% dextran-75, and same ionic composition of 0.01 M K/NaPB, pH 7.4. These analyses revealed that there is no direct interaction of TMAO with proteins, suggesting that the TMAO effects on the protein structure in crowded solutions occur via the effects of this osmolyte on solvent properties of aqueous media. The effects of TMAO on protein structure in the presence of polymers were rather complex and protein-specific. Curiously, our study revealed that in highly concentrated polymer solutions, TMAO does not always act to promote further protein folding.


Assuntos
Metilaminas/química , Animais , Varredura Diferencial de Calorimetria , Bovinos , Quimotripsina/química , Dicroísmo Circular , Dextranos/química , Humanos , Concentração de Íons de Hidrogênio , Luz , Pâncreas/metabolismo , Polietilenoglicóis/química , Polímeros/química , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento de Radiação , Solventes/química , Espectrometria de Fluorescência , Temperatura , Água/química
2.
Urology ; 78(3): 601-5, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21783231

RESUMO

OBJECTIVE: To provide preliminary clinical performance evaluation of a novel prostate cancer (CaP) assay, prostate-specific antigen/solvent interaction analysis (PSA/SIA) that focused on changes to the structure of PSA. METHODS: Two-hundred twenty-two men undergoing prostate biopsy for accepted clinical criteria at 3 sites (University Hospitals Case Medical Center in Cleveland, Cleveland Clinic, and Veterans Administration Boston Healthcare System) were enrolled in institutional review board-approved study. Before transrectal ultrasound-guided biopsy, patients received digital rectal examination with systematic prostate massage followed by collection of urine. The PSA/SIA assay determined the relative partitioning of heterogeneous PSA isoform populations in urine between 2 aqueous phases. A structural index, K, whose numerical value is defined as the ratio of the concentration of all PSA isoforms, was determined by total PSA enzyme-linked immunosorbent assay and used to set a diagnostic threshold for CaP. Performance was assessed using receiver operating characteristic (ROC) analysis with biopsy as the gold standard. RESULTS: Biopsies were pathologically classified as case (malignant, n=100) or control (benign, n=122). ROC performance demonstrated area under the curve=0.90 for PSA/SIA and 0.58 for serum total PSA. At a cutoff value of k=1.73, PSA/SIA displayed sensitivity=100%, specificity=80.3%, positive predictive value=80.6%, and negative predictive value=100%. No attempt was made in this preliminary study to further control patient population or selection criteria for biopsy, nor did we analytically investigate the type of structural differences in PSA that led to changes in k value. CONCLUSION: PSA/SIA provides ratiometric information independently of PSA concentration. In this preliminary study, analysis of the overall structurally heterogeneous PSA isoform population using the SIA assay showed promising results to be further evaluated in future studies.


Assuntos
Antígeno Prostático Específico/urina , Neoplasias da Próstata/diagnóstico , Adulto , Biópsia por Agulha , Ensaio de Imunoadsorção Enzimática , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Próstata/patologia , Antígeno Prostático Específico/química , Isoformas de Proteínas , Sensibilidade e Especificidade , Solventes
3.
J Physiol ; 559(Pt 1): 55-65, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15218065

RESUMO

We have recently shown that carbonic anhydrase II (CAII) binds in vitro to the C-terminus of the electrogenic sodium bicarbonate cotransporter kNBC1 (kNBC1-ct). In the present study we determined the molecular mechanisms for the interaction between the two proteins and whether kNBC1 and CAII form a transport metabolon in vivo wherein bicarbonate is transferred from CAII directly to the cotransporter. Various residues in the C-terminus of kNBC1 were mutated and the effect of these mutations on both the magnitude of CAII binding and the function of kNBC1 expressed in mPCT cells was determined. Two clusters of acidic amino acids, L(958)DDV and D(986)NDD in the wild-type kNBC1-ct involved in CAII binding were identified. In both acidic clusters, the first aspartate residue played a more important role in CAII binding than others. A significant correlation between the magnitude of CAII binding and kNBC1-mediated flux was shown. The results indicated that CAII activity enhances flux through the cotransporter when the enzyme is bound to kNBC1. These data are the first direct evidence that a complex of an electrogenic sodium bicarbonate cotransporter with CAII functions as a transport metabolon.


Assuntos
Anidrase Carbônica II/metabolismo , Túbulos Renais Proximais/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Sequência de Aminoácidos , Animais , Anidrase Carbônica II/genética , Anidrase Carbônica II/fisiologia , Células Cultivadas , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/enzimologia , Camundongos , Dados de Sequência Molecular , Ligação Proteica/genética , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/fisiologia
4.
J Physiol ; 544(3): 679-85, 2002 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-12411514

RESUMO

The HCO(3)(-) : Na(+) cotransport stoichiometry of the electrogenic sodium bicarbonate cotransporter kNBC1 determines the reversal potential (E(rev)) and thus the net direction of transport of these ions through the cotransporter. Previously, we showed that phosphorylation of kNBC1-Ser(982) in the carboxy-terminus of kNBC1 (kNBC1-Ct), by cAMP-protein kinase A (PKA), shifts the stoichiometry from 3 : 1 to 2 : 1 and that binding of bicarbonate to the cotransporter is electrostaticaly modulated. These results raise the possibility that phosphorylated kNBC1-Ser(982), or other nearby negatively charged residues shift the stoichiometry by blocking a bicarbonate-binding site. In the current study, we examined the role of the negative charge on Ser(982)-phosphate and three aspartate residues in a D986NDD custer in altering the stoichiometry of kNBC1. mPCT cells expressing kNBC1 mutants were grown on filters and mounted in an Ussing chamber for electrophysiological studies. Enhanced green fluorescence protein (EGFP)-tagged mutant constructs expressed in the same cells were used to determine the phosphorylation status of kNBC1-Ser(982). The data indicate that both kNBC1-Asp(986) and kNBC1-Asp(988), but not kNBC1-Asp(989), are required for the phosphorylation-induced shift in stoichiometry. A homologous motif (D887ADD) in the carboxy-terminus of the anion exchanger AE1 binds to carbonic anhydrase II (CAII). In isothermal titration calorimetry experiments, CAII was found to bind to kNBC1-Ct with a K(D) of 160 +/- 10 nM. Acetazolamide inhibited the short-circuit current through the cotransporter by 65 % when the latter operated in the 3 : 1 mode, but had no effect on the current in the 2 : 1 mode. Acetazolamide did not affect the cotransport stoichiometry or the ability of 8-Br-cAMP to shift the stoichiometry. Although CAII does not affect the transport stoichiometry, it may play an important role in enhancing the flux through the transporter when kNBC1-Ser(982) is unphosphorylated.


Assuntos
Ácido Aspártico/química , Anidrase Carbônica II/metabolismo , Simportadores de Sódio-Bicarbonato/química , Simportadores de Sódio-Bicarbonato/metabolismo , Motivos de Aminoácidos/fisiologia , Animais , Linhagem Celular , Eletroquímica , Matemática , Camundongos , Fosforilação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA