Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
J Cell Biol ; 223(12)2024 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-39320351

RESUMO

Metastasis initiates when cancer cells escape from the primary tumor, which requires changes to intercellular junctions. Claudins are transmembrane proteins that form the tight junction, and their expression is reduced in aggressive breast tumors. However, claudins' roles during breast cancer metastasis remain unclear. We used gain- and loss-of-function genetics in organoids isolated from murine breast cancer models to establish that Cldn7 suppresses invasion and metastasis. Transcriptomic analysis revealed that Cldn7 knockdown induced smooth muscle actin (SMA)-related genes and a broader mesenchymal phenotype. We validated our results in human cell lines, fresh human tumor tissue, bulk RNA-seq, and public single-cell RNA-seq data. We consistently observed an inverse relationship between Cldn7 expression and expression of SMA-related genes. Furthermore, knockdown and overexpression of SMA-related genes demonstrated that they promote breast cancer invasion. Our data reveal that Cldn7 suppresses breast cancer invasion and metastasis through negative regulation of SMA-related and mesenchymal gene expression.


Assuntos
Actinas , Neoplasias da Mama , Claudinas , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica , Humanos , Animais , Claudinas/metabolismo , Claudinas/genética , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Actinas/metabolismo , Actinas/genética , Camundongos , Linhagem Celular Tumoral , Metástase Neoplásica , Movimento Celular/genética
2.
Ann Surg ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39229726

RESUMO

OBJECTIVE: We integrate a new approach to chemosensitivity data for clinically-relevant regimen matching, and demonstrate the relationship with clinical outcomes in a large PDO biobank. SUMMARY BACKGROUND DATA: Pancreatic ductal adenocarcinoma (PDAC) usually recurs following potentially curative resection. Prior studies related patient-derived organoid (PDO) chemosensitivity with clinical responses. METHODS: PDOs were established from pre-treatment biopsies in a multi-institution clinical trial (n=21) and clinical specimens at a high-volume pancreatectomy center (n=74, of which 48 were pre-treated). PDO in vitro chemosensitivities to standard-of-care chemotherapeutics (pharmacotypes) were matched to potential clinically-relevant regimens by a weighted nearest-neighbors analysis. Clinical outcomes were then compared for patients who had well-matched versus poorly-matched treatment according to this metric. RESULTS: Our function matched 91% of PDOs to a standard-of-care regimen (9% pan-resistant). PDOs poorly-matched to the neoadjuvant regimen received would have matched to an alternative in 34% of cases. Patients receiving neoadjuvant chemotherapy well-matched to their pharmacotype experienced improved CA 19-9 response (60% decreased to normal when well-matched, 29% when poorly-matched, P<0.05) and lymph node down-staging (33% N0 after poorly-matched, 69% after well-matched, P<0.05). Patients receiving both well-matched neoadjuvant and adjuvant chemotherapy experienced improved recurrence-free- and overall survival (median RFS 8.5 mo poorly-matched, 15.9 mo well-matched, P<0.05; median OS 19.5 vs. 30.3 mo, P<0.05). CONCLUSION: In vitro PDO pharmacotyping can inform PDAC therapy selection. We demonstrate improved outcomes including survival for patients treated with regimens well-matched to their PDO chemosensitivities. A subsequent prospective study using PDO pharmacotype matching could improve oncologic outcomes and improve quality of life by avoiding therapies not expected to be effective.

3.
JCI Insight ; 9(18)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106104

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is highly lethal and resistant to immunotherapy. Although immune recognition can be enhanced with immunomodulatory agents including checkpoint inhibitors and vaccines, few patients experience clinical efficacy because the tumor immune microenvironment (TiME) is dominated by immunosuppressive myeloid cells that impose T cell inhibition. Inhibition of phosphodiesterase-5 (PDE5) was reported to downregulate metabolic regulators arginase and inducible NOS in immunosuppressive myeloid cells and enhance immunity against immune-sensitive tumors, including head and neck cancers. We show for the first time to our knowledge that combining a PDE5 inhibitor, tadalafil, with a mesothelin-specific vaccine, anti-programmed cell death protein 1, and anti-cytotoxic T lymphocyte-associated protein 4 yields antitumor efficacy even against immune-resistant PDAC. To determine immunologic advantages conferred by tadalafil, we profiled the TiME using mass cytometry and single-cell RNA-sequencing analysis with Domino to infer intercellular signaling. Our analyses demonstrated that tadalafil reprograms myeloid cells to be less immunosuppressive. Moreover, tadalafil synergized with the vaccine, enhancing T cell activation including mesothelin-specific T cells. Tadalafil treatment was also associated with myeloid/T cell signaling axes important for antitumor responses (e.g., Cxcr3, Il12). Our study shows that PDE5 inhibition combined with vaccine-based immunotherapy promotes pro-inflammatory states of myeloid cells, activation of T cells, and enhanced myeloid/T cell crosstalk to yield antitumor efficacy against immune-resistant PDAC.


Assuntos
Vacinas Anticâncer , Carcinoma Ductal Pancreático , Imunoterapia , Células Mieloides , Neoplasias Pancreáticas , Inibidores da Fosfodiesterase 5 , Tadalafila , Microambiente Tumoral , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Células Mieloides/imunologia , Células Mieloides/efeitos dos fármacos , Tadalafila/farmacologia , Tadalafila/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/farmacologia , Humanos , Camundongos , Imunoterapia/métodos , Animais , Inibidores da Fosfodiesterase 5/farmacologia , Inibidores da Fosfodiesterase 5/uso terapêutico , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/tratamento farmacológico , Linhagem Celular Tumoral , Mesotelina
4.
Cell Syst ; 15(8): 753-769.e5, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39116880

RESUMO

This study introduces a new imaging, spatial transcriptomics (ST), and single-cell RNA-sequencing integration pipeline to characterize neoplastic cell state transitions during tumorigenesis. We applied a semi-supervised analysis pipeline to examine premalignant pancreatic intraepithelial neoplasias (PanINs) that can develop into pancreatic ductal adenocarcinoma (PDAC). Their strict diagnosis on formalin-fixed and paraffin-embedded (FFPE) samples limited the single-cell characterization of human PanINs within their microenvironment. We leverage whole transcriptome FFPE ST to enable the study of a rare cohort of matched low-grade (LG) and high-grade (HG) PanIN lesions to track progression and map cellular phenotypes relative to single-cell PDAC datasets. We demonstrate that cancer-associated fibroblasts (CAFs), including antigen-presenting CAFs, are located close to PanINs. We further observed a transition from CAF-related inflammatory signaling to cellular proliferation during PanIN progression. We validate these findings with single-cell high-dimensional imaging proteomics and transcriptomics technologies. Altogether, our semi-supervised learning framework for spatial multi-omics has broad applicability across cancer types to decipher the spatiotemporal dynamics of carcinogenesis.


Assuntos
Fibroblastos Associados a Câncer , Carcinogênese , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Carcinogênese/genética , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal Pancreático/genética , Microambiente Tumoral/genética , Análise de Célula Única/métodos , Transcriptoma/genética , Regulação Neoplásica da Expressão Gênica/genética , Carcinoma in Situ/genética , Carcinoma in Situ/patologia
5.
Stem Cell Reports ; 19(9): 1336-1350, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39151428

RESUMO

Variability between human pluripotent stem cell (hPSC) lines remains a challenge and opportunity in biomedicine. In this study, hPSC lines from multiple donors were differentiated toward neuroectoderm and mesendoderm lineages. We revealed dynamic transcriptomic patterns that delineate the emergence of these lineages, which were conserved across lines, along with individual line-specific transcriptional signatures that were invariant throughout differentiation. These transcriptomic signatures predicted an antagonism between SOX21-driven forebrain fates and retinoic acid-induced hindbrain fates. Replicate lines and paired adult tissue demonstrated the stability of these line-specific transcriptomic traits. We show that this transcriptomic variation in lineage bias had both genetic and epigenetic origins, aligned with the anterior-to-posterior structure of early mammalian development, and was present across a large collection of hPSC lines. These findings contribute to developing systematic analyses of PSCs to define the origin and consequences of variation in the early events orchestrating individual human development.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Pluripotentes , Transcriptoma , Humanos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Diferenciação Celular/genética , Linhagem da Célula/genética , Linhagem Celular , Tretinoína/farmacologia , Tretinoína/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Epigênese Genética
6.
bioRxiv ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39185156

RESUMO

Identifying the key molecular pathways that enable metastasis by analyzing the eventual metastatic tumor is challenging because the state of the founder subclone likely changes following metastatic colonization. To address this challenge, we labeled primary mouse pancreatic ductal adenocarcinoma (PDAC) subclones with DNA barcodes to characterize their pre-metastatic state using ATAC-seq and RNA-seq and determine their relative in vivo metastatic potential prospectively. We identified a gene signature separating metastasis-high and metastasis-low subclones orthogonal to the normal-to-PDAC and classical-to-basal axes. The metastasis-high subclones feature activation of IL-1 pathway genes and high NF-κB and Zeb/Snail family activity and the metastasis-low subclones feature activation of neuroendocrine, motility, and Wnt pathway genes and high CDX2 and HOXA13 activity. In a functional screen, we validated novel mediators of PDAC metastasis in the IL-1 pathway, including the NF-κB targets Fos and Il23a, and beyond the IL-1 pathway including Myo1b and Tmem40. We scored human PDAC tumors for our signature of metastatic potential from mouse and found that metastases have higher scores than primary tumors. Moreover, primary tumors with higher scores are associated with worse prognosis. We also found that our metastatic potential signature is enriched in other human carcinomas, suggesting that it is conserved across epithelial malignancies. This work establishes a strategy for linking cancer cell state to future behavior, reveals novel functional regulators of PDAC metastasis, and establishes a method for scoring human carcinomas based on metastatic potential.

7.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39179248

RESUMO

Advancements in imaging technologies have revolutionized our ability to deeply profile pathological tissue architectures, generating large volumes of imaging data with unparalleled spatial resolution. This type of data collection, namely, spatial proteomics, offers invaluable insights into various human diseases. Simultaneously, computational algorithms have evolved to manage the increasing dimensionality of spatial proteomics inherent in this progress. Numerous imaging-based computational frameworks, such as computational pathology, have been proposed for research and clinical applications. However, the development of these fields demands diverse domain expertise, creating barriers to their integration and further application. This review seeks to bridge this divide by presenting a comprehensive guideline. We consolidate prevailing computational methods and outline a roadmap from image processing to data-driven, statistics-informed biomarker discovery. Additionally, we explore future perspectives as the field moves toward interfacing with other quantitative domains, holding significant promise for precision care in immuno-oncology.


Assuntos
Biologia Computacional , Proteômica , Humanos , Proteômica/métodos , Biologia Computacional/métodos , Biomarcadores Tumorais/metabolismo , Neoplasias/metabolismo , Neoplasias/imunologia , Algoritmos , Biomarcadores , Processamento de Imagem Assistida por Computador/métodos
8.
Cancer Res ; 84(14): 2229-2230, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005052

RESUMO

As convergence science is emerging as a theme in cancer research, scientists from diverse backgrounds, including mathematics, are increasingly entering our research community. The captain of a Southwest Airlines flight recently paged in jest for a mathematician to help support fuel calculations that would enable a flight to arrive safely at the American Association for Cancer Research (AACR) Annual Meeting, epitomizing the need for well-trained mathematicians to address pressing problems. Here, we summarize the roles mathematicians can play in cancer research and the support needed to facilitate their entry into the cancer research field. The inclusion of scientific diversity across quantitative and engineering disciplines is critical for advancing the understanding and treatment of cancer.


Assuntos
Matemática , Neoplasias , Humanos , Neoplasias/terapia , Pesquisa Biomédica
9.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826266

RESUMO

Patients with metastatic triple-negative breast cancer (TNBC) show variable responses to PD-1 inhibition. Efficient patient selection by predictive biomarkers would be desirable, but is hindered by the limited performance of existing biomarkers. Here, we leveraged in-silico patient cohorts generated using a quantitative systems pharmacology model of metastatic TNBC, informed by transcriptomic and clinical data, to explore potential ways to improve patient selection. We tested 90 biomarker candidates, including various cellular and molecular species, by a cutoff-based biomarker testing algorithm combined with machine learning-based feature selection. Combinations of pre-treatment biomarkers improved the specificity compared to single biomarkers at the cost of reduced sensitivity. On the other hand, early on-treatment biomarkers, such as the relative change in tumor diameter from baseline measured at two weeks after treatment initiation, achieved remarkably higher sensitivity and specificity. Further, blood-based biomarkers had a comparable ability to tumor- or lymph node-based biomarkers in identifying a subset of responders, potentially suggesting a less invasive way for patient selection.

10.
bioRxiv ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38853982

RESUMO

Background: Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer. PDAC's poor prognosis and resistance to immunotherapy are attributed in part to its dense, fibrotic tumor microenvironment (TME), which is known to inhibit immune cell infiltration. We recently demonstrated that PDAC patients with higher natural killer (NK) cell content and activation have better survival rates. However, NK cell interactions in the PDAC TME have yet to be deeply studied. We show here that NK cells are present and active in the human PDAC TME. Methods: We used imaging mass cytometry (IMC) to assess NK cell content, function, and spatial localization in human PDAC samples. Then, we used CellChat, a tool to infer ligand-receptor interactions, on a human PDAC scRNAseq dataset to further define NK cell interactions in PDAC. Results: Spatial analyses showed for the first time that active NK cells are present in the PDAC TME, and both associate and interact with malignant epithelial cell ducts. We also found that fibroblast-rich, desmoplastic regions limit NK cell infiltration in the PDAC TME. CellChat analysis identified that the CD44 receptor on NK cells interacts with PDAC extracellular matrix (ECM) components such as collagen, fibronectin and laminin expressed by fibroblasts and malignant epithelial cells. This led us to hypothesize that these interactions play roles in regulating NK cell motility in desmoplastic PDAC TMEs. Using 2D and 3D in vitro assays, we found that CD44 neutralization significantly increased NK cell invasion through matrix. Conclusions: Targeting ECM-immune cell interactions may increase NK cell invasion into the PDAC TME.

11.
Cancer Res ; 84(16): 2734-2748, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38861365

RESUMO

Due to the lack of treatment options, there remains a need to advance new therapeutics in hepatocellular carcinoma (HCC). The traditional approach moves from initial molecular discovery through animal models to human trials to advance novel systemic therapies that improve treatment outcomes for patients with cancer. Computational methods that simulate tumors mathematically to describe cellular and molecular interactions are emerging as promising tools to simulate the impact of therapy entirely in silico, potentially greatly accelerating delivery of new therapeutics to patients. To facilitate the design of dosing regimens and identification of potential biomarkers for immunotherapy, we developed a new computational model to track tumor progression at the organ scale while capturing the spatial heterogeneity of the tumor in HCC. This computational model of spatial quantitative systems pharmacology was designed to simulate the effects of combination immunotherapy. The model was initiated using literature-derived parameter values and fitted to the specifics of HCC. Model validation was done through comparison with spatial multiomics data from a neoadjuvant HCC clinical trial combining anti-PD1 immunotherapy and a multitargeted tyrosine kinase inhibitor cabozantinib. Validation using spatial proteomics data from imaging mass cytometry demonstrated that closer proximity between CD8 T cells and macrophages correlated with nonresponse. We also compared the model output with Visium spatial transcriptomics profiling of samples from posttreatment tumor resections in the clinical trial and from another independent study of anti-PD1 monotherapy. Spatial transcriptomics data confirmed simulation results, suggesting the importance of spatial patterns of tumor vasculature and TGFß in tumor and immune cell interactions. Our findings demonstrate that incorporating mathematical modeling and computer simulations with high-throughput spatial multiomics data provides a novel approach for patient outcome prediction and biomarker discovery. Significance: Incorporating mathematical modeling and computer simulations with high-throughput spatial multiomics data provides an effective approach for patient outcome prediction and biomarker discovery.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Imunoterapia , Neoplasias Hepáticas , Humanos , Anilidas/uso terapêutico , Anilidas/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Ensaios Clínicos como Assunto , Simulação por Computador , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Multiômica , Piridinas/uso terapêutico , Piridinas/farmacologia , Microambiente Tumoral/imunologia
12.
Cancer Cell ; 42(5): 723-726, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38701793

RESUMO

Advances in biomedical research require a robust physician scientist workforce. Despite being equally successful at securing early career awards from the NIH as men, women MD-PhD physician scientists are less likely to serve as principal investigators on mid- and later careers awards. Here, we discuss the causes of gender disparities in academic medicine, the implications of losing highly trained women physician scientists, and the institutional and systemic changes needed to sustain this pool of talented investigators.


Assuntos
Pesquisa Biomédica , Médicas , Pesquisadores , Humanos , Feminino , Médicas/estatística & dados numéricos , Masculino , Escolha da Profissão , Estados Unidos , Sexismo , Mobilidade Ocupacional , Médicos , Distinções e Prêmios
13.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38557676

RESUMO

Understanding the intricate interactions of cancer cells with the tumor microenvironment (TME) is a pre-requisite for the optimization of immunotherapy. Mechanistic models such as quantitative systems pharmacology (QSP) provide insights into the TME dynamics and predict the efficacy of immunotherapy in virtual patient populations/digital twins but require vast amounts of multimodal data for parameterization. Large-scale datasets characterizing the TME are available due to recent advances in bioinformatics for multi-omics data. Here, we discuss the perspectives of leveraging omics-derived bioinformatics estimates to inform QSP models and circumvent the challenges of model calibration and validation in immuno-oncology.


Assuntos
Neoplasias , Farmacologia , Humanos , Multiômica , Farmacologia em Rede , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oncologia , Biologia Computacional , Microambiente Tumoral
14.
Nat Med ; 30(4): 1044-1053, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584166

RESUMO

Programmed cell death protein 1 (PD-1) inhibitors have modest efficacy as a monotherapy in hepatocellular carcinoma (HCC). A personalized therapeutic cancer vaccine (PTCV) may enhance responses to PD-1 inhibitors through the induction of tumor-specific immunity. We present results from a single-arm, open-label, phase 1/2 study of a DNA plasmid PTCV (GNOS-PV02) encoding up to 40 neoantigens coadministered with plasmid-encoded interleukin-12 plus pembrolizumab in patients with advanced HCC previously treated with a multityrosine kinase inhibitor. Safety and immunogenicity were assessed as primary endpoints, and treatment efficacy and feasibility were evaluated as secondary endpoints. The most common treatment-related adverse events were injection-site reactions, observed in 15 of 36 (41.6%) patients. No dose-limiting toxicities or treatment-related grade ≥3 events were observed. The objective response rate (modified intention-to-treat) per Response Evaluation Criteria in Solid Tumors 1.1 was 30.6% (11 of 36 patients), with 8.3% (3 of 36) of patients achieving a complete response. Clinical responses were associated with the number of neoantigens encoded in the vaccine. Neoantigen-specific T cell responses were confirmed in 19 of 22 (86.4%) evaluable patients by enzyme-linked immunosorbent spot assays. Multiparametric cellular profiling revealed active, proliferative and cytolytic vaccine-specific CD4+ and CD8+ effector T cells. T cell receptor ß-chain (TCRß) bulk sequencing results demonstrated vaccination-enriched T cell clone expansion and tumor infiltration. Single-cell analysis revealed posttreatment T cell clonal expansion of cytotoxic T cell phenotypes. TCR complementarity-determining region cloning of expanded T cell clones in the tumors following vaccination confirmed reactivity against vaccine-encoded neoantigens. Our results support the PTCV's mechanism of action based on the induction of antitumor T cells and show that a PTCV plus pembrolizumab has clinical activity in advanced HCC. ClinicalTrials.gov identifier: NCT04251117 .


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Vacinas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Anticorpos Monoclonais Humanizados/efeitos adversos , Vacinas/uso terapêutico
15.
Cancer Res ; 84(9): 1517-1533, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38587552

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy characterized by an immunosuppressive tumor microenvironment enriched with cancer-associated fibroblasts (CAF). This study used a convergence approach to identify tumor cell and CAF interactions through the integration of single-cell data from human tumors with human organoid coculture experiments. Analysis of a comprehensive atlas of PDAC single-cell RNA sequencing data indicated that CAF density is associated with increased inflammation and epithelial-mesenchymal transition (EMT) in epithelial cells. Transfer learning using transcriptional data from patient-derived organoid and CAF cocultures provided in silico validation of CAF induction of inflammatory and EMT epithelial cell states. Further experimental validation in cocultures demonstrated integrin beta 1 (ITGB1) and vascular endothelial factor A (VEGFA) interactions with neuropilin-1 mediating CAF-epithelial cell cross-talk. Together, this study introduces transfer learning from human single-cell data to organoid coculture analyses for experimental validation of discoveries of cell-cell cross-talk and identifies fibroblast-mediated regulation of EMT and inflammation. SIGNIFICANCE: Adaptation of transfer learning to relate human single-cell RNA sequencing data to organoid-CAF cocultures facilitates discovery of human pancreatic cancer intercellular interactions and uncovers cross-talk between CAFs and tumor cells through VEGFA and ITGB1.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Técnicas de Cocultura , Transição Epitelial-Mesenquimal , Inflamação , Integrina beta1 , Neoplasias Pancreáticas , Análise de Célula Única , Microambiente Tumoral , Humanos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Inflamação/patologia , Inflamação/metabolismo , Integrina beta1/metabolismo , Integrina beta1/genética , Organoides/patologia , Organoides/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Neuropilina-1/metabolismo , Neuropilina-1/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Comunicação Celular
16.
Sci Adv ; 10(11): eadk0785, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478601

RESUMO

Cell migration is a critical contributor to metastasis. Cytokine production and its role in cancer cell migration have been traditionally associated with immune cells. We find that the histone methyltransferase Mixed-Lineage Leukemia 1 (MLL1) controls 3D cell migration via cytokines, IL-6, IL-8, and TGF-ß1, secreted by the cancer cells themselves. MLL1, with its scaffold protein Menin, controls actin filament assembly via the IL-6/8/pSTAT3/Arp3 axis and myosin contractility via the TGF-ß1/Gli2/ROCK1/2/pMLC2 axis, which together regulate dynamic protrusion generation and 3D cell migration. MLL1 also regulates cell proliferation via mitosis-based and cell cycle-related pathways. Mice bearing orthotopic MLL1-depleted tumors exhibit decreased lung metastatic burden and longer survival. MLL1 depletion leads to lower metastatic burden even when controlling for the difference in primary tumor growth rates. Combining MLL1-Menin inhibitor with paclitaxel abrogates tumor growth and metastasis, including preexistent metastasis. These results establish MLL1 as a potent regulator of cell migration and highlight the potential of targeting MLL1 in patients with metastatic disease.


Assuntos
Leucemia , Proteína de Leucina Linfoide-Mieloide , Animais , Humanos , Camundongos , Movimento Celular , Citocinas , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Interleucina-6 , Proteína de Leucina Linfoide-Mieloide/metabolismo , Quinases Associadas a rho , Fator de Crescimento Transformador beta1
17.
Nat Cancer ; 5(6): 866-879, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38355777

RESUMO

We report the results of 24 women, 50% (N = 12) with hormone receptor-positive breast cancer and 50% (N = 12) with advanced triple-negative breast cancer, treated with entinostat + nivolumab + ipilimumab from the dose escalation (N = 6) and expansion cohort (N = 18) of ETCTN-9844 ( NCT02453620 ). The primary endpoint was safety. Secondary endpoints were overall response rate, clinical benefit rate, progression-free survival and change in tumor CD8:FoxP3 ratio. There were no dose-limiting toxicities. Among evaluable participants (N = 20), the overall response rate was 25% (N = 5), with 40% (N = 4) in triple-negative breast cancer and 10% (N = 1) in hormone receptor-positive breast cancer. The clinical benefit rate was 40% (N = 8), and progression-free survival at 6 months was 50%. Exploratory analyses revealed that changes in myeloid cells may contribute to responses; however, no correlation was noted between changes in CD8:FoxP3 ratio, PD-L1 status and tumor mutational burden and response. These findings support further investigation of this treatment in a phase II trial.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Benzamidas , Ipilimumab , Nivolumabe , Piridinas , Receptor ErbB-2 , Humanos , Feminino , Pessoa de Meia-Idade , Piridinas/administração & dosagem , Piridinas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Nivolumabe/uso terapêutico , Nivolumabe/administração & dosagem , Adulto , Receptor ErbB-2/metabolismo , Benzamidas/uso terapêutico , Benzamidas/administração & dosagem , Idoso , Ipilimumab/uso terapêutico , Ipilimumab/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Intervalo Livre de Progressão
18.
Cell Rep Methods ; 3(12): 100670, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38086385

RESUMO

The immune system defines a complex network of tissues and cell types that orchestrate responses across the body in a dynamic manner. The local and systemic interactions between immune and cancer cells contribute to disease progression. Lymphocytes are activated in lymph nodes, traffic through the periphery, and impact cancer progression through their interactions with tumor cells. As a result, therapeutic response and resistance are mediated across tissues, and a comprehensive understanding of lymphocyte dynamics requires a systems-level approach. In this review, we highlight experimental and computational methods that can leverage the study of leukocyte trafficking through an immunomics lens and reveal how adaptive immunity shapes cancer.


Assuntos
Imunoinformática , Neoplasias , Humanos , Linfócitos , Neoplasias/terapia , Leucócitos , Linfonodos
19.
Adv Mater ; : e2310476, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087458

RESUMO

Aging is associated with immunological changes that compromise response to infections and vaccines, exacerbate inflammatory diseases and can potentially mitigate tissue repair. Even so, age-related changes to the immune response to tissue damage and regenerative medicine therapies remain unknown. Here, it is characterized how aging induces changes in immunological signatures that inhibit tissue repair and therapeutic response to a clinical regenerative biological scaffold derived from extracellular matrix. Signatures of inflammation and interleukin (IL)-17 signaling increased with injury and treatment both locally and regionally in aged animals, and computational analysis uncovered age-associated senescent-T cell communication that promotes type 3 immunity in T cells. Local inhibition of type 3 immune activation using IL17-neutralizing antibodies improves healing and restores therapeutic response to the regenerative biomaterial, promoting muscle repair in older animals. These results provide insights into tissue immune dysregulation that occurs with aging that can be targeted to rejuvenate repair.

20.
JCI Insight ; 8(23)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063199

RESUMO

Personalized cancer vaccines aim to activate and expand cytotoxic antitumor CD8+ T cells to recognize and kill tumor cells. However, the role of CD4+ T cell activation in the clinical benefit of these vaccines is not well defined. We previously established a personalized neoantigen vaccine (PancVAX) for the pancreatic cancer cell line Panc02, which activates tumor-specific CD8+ T cells but required combinatorial checkpoint modulators to achieve therapeutic efficacy. To determine the effects of neoantigen-specific CD4+ T cell activation, we generated a vaccine (PancVAX2) targeting both major histocompatibility complex class I- (MHCI-) and MHCII-specific neoantigens. Tumor-bearing mice vaccinated with PancVAX2 had significantly improved control of tumor growth and long-term survival benefit without concurrent administration of checkpoint inhibitors. PancVAX2 significantly enhanced priming and recruitment of neoantigen-specific CD8+ T cells into the tumor with lower PD-1 expression after reactivation compared with the CD8+ vaccine alone. Vaccine-induced neoantigen-specific Th1 CD4+ T cells in the tumor were associated with decreased Tregs. Consistent with this, PancVAX2 was associated with more proimmune myeloid-derived suppressor cells and M1-like macrophages in the tumor, demonstrating a less immunosuppressive tumor microenvironment. This study demonstrates the biological importance of prioritizing and including CD4+ T cell-specific neoantigens for personalized cancer vaccine modalities.


Assuntos
Vacinas Anticâncer , Neoplasias Pancreáticas , Camundongos , Animais , Linfócitos T CD4-Positivos , Antígenos de Neoplasias , Eficácia de Vacinas , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA