Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175765

RESUMO

Nanocarriers, and especially nanostructured lipid carriers (NLC), represent one of the most effective systems for topical drug administration. NLCs are biodegradable, biocompatible and provide a prolonged drug release. The glutamate release inhibitor Riluzole (RLZ) is a drug currently used for amyotrophic lateral sclerosis (ALS), with anti-proliferative effects potentially beneficial for diseases with excessive cell turnover. However, RLZ possesses low water solubility and high light-sensibility. We present here optimized NLCs loaded with RLZ (RLZ-NLCs) as a potential topical treatment. RLZ-NLCs were prepared by the hot-pressure homogenization method using active essential oils as liquid lipids, and optimized using the design of experiments approach. RLZ-NLCs were developed obtaining optimal properties for dermal application (mean size below 200 nm, negative surface charge and high RLZ entrapment efficacy). In vitro release study demonstrates that RLZ-NLCs allow the successful delivery of RLZ in a sustained manner. Moreover, RLZ-NLCs are not angiogenic and are able to inhibit keratinocyte cell proliferation. Hence, a NLCs delivery system loading RLZ in combination with natural essential oils constitutes a promising strategy against keratinocyte hyperproliferative conditions.


Assuntos
Nanopartículas , Nanoestruturas , Dermatopatias , Humanos , Riluzol/farmacologia , Portadores de Fármacos , Dermatopatias/metabolismo , Liberação Controlada de Fármacos , Lipídeos/farmacologia , Tamanho da Partícula , Pele/metabolismo
2.
Pharmacol Res ; 170: 105731, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34157422

RESUMO

Psoriasis is a chronic and relapsing inflammatory skin disease lacking a cure that affects approximately 2% of the population. Defective keratinocyte proliferation and differentiation, and aberrant immune responses are major factors in its pathogenesis. Available treatments for moderate to severe psoriasis are directed to immune system causing systemic immunosuppression over time, and thus concomitant serious side effects (i.e. infections and cancer) may appear. In recent years, the Gi protein-coupled A3 receptor (A3R) for adenosine has been suggested as a novel and very promising therapeutic target for psoriasis. Accordingly, selective, and high affinity A3R agonists are known to induce robust anti-inflammatory effects in animal models of autoimmune inflammatory diseases. Here, we demonstrated the efficacy of a selective A3R agonist, namely MRS5698, in preventing the psoriatic-like phenotype in the IL-23 mouse model of psoriasis. Subsequently, we photocaged this molecule with a coumarin moiety to yield the first photosensitive A3R agonist, MRS7344, which in photopharmacological experiments prevented the psoriatic-like phenotype in the IL-23 animal model. Thus, we have demonstrated the feasibility of using a non-invasive, site-specific, light-directed approach to psoriasis treatment.


Assuntos
Agonistas do Receptor A3 de Adenosina/farmacologia , Adenosina/análogos & derivados , Fotoquimioterapia , Psoríase/prevenção & controle , Receptor A3 de Adenosina/efeitos dos fármacos , Pele/efeitos dos fármacos , Adenosina/farmacologia , Animais , Modelos Animais de Doenças , Interleucina-23 , Ligantes , Psoríase/imunologia , Psoríase/metabolismo , Psoríase/patologia , Receptor A3 de Adenosina/metabolismo , Transdução de Sinais , Pele/imunologia , Pele/metabolismo , Pele/patologia
3.
Cell Death Dis ; 12(4): 359, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824284

RESUMO

Dose of Trp53, the main keeper of genome stability, influences tumorigenesis; however, the causes underlying and driving tumorigenesis over time by the loss of a single p53 allele are still poorly characterized. Here, we found that single p53 allele loss specifically impacted the oxidative, DNA damage and inflammatory status of hematopoietic lineages. In particular, single Trp53 allele loss in mice triggered oxidative stress in peripheral blood granulocytes and spleenocytes, whereas lack of two Trp53 alleles produced enhanced oxidative stress in thymus cells, resulting in a higher incidence of lymphomas in the Trp53 knockout (KO) mice compared with hemizygous (HEM). In addition, single or complete loss of Trp53 alleles, as well as p53 downregulation, led to a differential increase in basal, LPS- and UVB-induced expression of a plethora of pro-inflammatory cytokine, such as interleukin-12 (Il-12a), TNFα (Tnfa) and interleukin (Il-23a) in bone marrow-derived macrophage cells (BMDMs) compared to WT cells. Interestingly, p53-dependent increased inflammatory gene expression correlated with deregulated expression of the NF-κB pathway inhibitor IκBα. Chromatin immunoprecipitation data revealed decreased p65 binding to Nfkbia in the absence of p53 and p53 binding to Nfkbia promoter, uncovering a novel crosstalk mechanism between p53 and NF-κB transcription factors. Overall, our data suggest that single Trp53 allele loss can drive a sustained inflammatory, DNA damage and oxidative stress response that, over time, facilitate and support carcinogenesis.


Assuntos
Citocinas/genética , Dano ao DNA/genética , Proteínas I-kappa B/metabolismo , Inflamação/genética , Perda de Heterozigosidade/genética , Proteína Supressora de Tumor p53/genética , Animais , Carcinogênese/genética , Citocinas/metabolismo , Expressão Gênica/genética , Instabilidade Genômica/genética , Linfoma/genética , Camundongos Transgênicos , Inibidor de NF-kappaB alfa/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA