Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 755, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987285

RESUMO

Whether from environmental and occupational hazards or from topical pharmaceuticals, the human skin comes into contact with various chemicals every day. In vivo experiments not only require large investments of both time and money, but in vivo experiments can also be unethical due to the need to intentionally or incidentally expose humans or animals to toxic chemicals. Comparatively, in vitro experiments offer ethical and financial advantages when combined with the opportunity to selectively choose chemicals for experimentation. With in vivo experimentation being so infeasible, many scientists have chosen to make their in vitro data available publicly. Using these data, a detailed database containing 73 chemicals was created with a robust set of descriptors to be used in connection with mathematical modeling to predict diffusion, permeability, and partition coefficients. This resulting database is tailored to be easily used in various coding languages.


Assuntos
Absorção Cutânea , Pele , Humanos , Pele/metabolismo , Bases de Dados Factuais , Modelos Biológicos , Modelos Teóricos
2.
Environ Sci Technol ; 56(8): 5266-5275, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35380802

RESUMO

1,4-Dioxane is a persistent and mobile organic chemical that has been found by the United States Environmental Protection Agency (USEPA) to be an unreasonable risk to human health in some occupational contexts. 1,4-Dioxane is released into the environment as industrial waste and occurs in some personal-care products as an unintended byproduct. However, limited exposure assessments have been conducted outside of an occupational context. In this study, the USEPA simulation modeling tool, Stochastic Human Exposure and Dose Simulator-High Throughput (SHEDS-HT), was adapted to estimate the exposure and chemical mass released down the drain (DTD) from drinking water consumption and product use. 1,4-Dioxane concentrations measured in drinking water and consumer products were used by SHEDS-HT to evaluate and compare the contributions of these sources to exposure and mass released DTD. Modeling results showed that compared to people whose daily per capita exposure came from only products (2.29 × 10-7 to 2.92 × 10-7 mg/kg/day), people exposed to both contaminated water and product use had higher per capita median exposures (1.90 × 10-6 to 4.27 × 10-6 mg/kg/day), with exposure mass primarily attributable to water consumption (75-91%). Last, we demonstrate through simulation that while a potential regulatory action could broadly reduce DTD release, the proportional reduction in exposure would be most significant for people with no or low water contamination.


Assuntos
Água Potável , Poluentes Químicos da Água , Dioxanos/análise , Exposição Ambiental/análise , Humanos , Compostos Orgânicos , Medição de Risco , Estados Unidos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA