Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuropathol Appl Neurobiol ; 50(3): e12991, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867123

RESUMO

AIMS: The aggregation and deposition of amyloid-ß (Aß) peptides in the brain is thought to be the initial driver in the pathogenesis of Alzheimer's disease (AD). Aside from full-length Aß peptides starting with an aspartate residue in position 1, both N-terminally truncated and elongated Aß peptides are produced by various proteases from the amyloid precursor protein (APP) and have been detected in brain tissues and body fluids. Recently, we demonstrated that the particularly abundant N-terminally truncated Aß4-x peptides are generated by ADAMTS4, a secreted metalloprotease that is exclusively expressed in the oligodendrocyte cell population. In this study, we investigated whether ADAMTS4 might also be involved in the generation of N-terminally elongated Aß peptides. METHODS: We used cell-free and cell-based assays in combination with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF) and electrochemiluminescence sandwich immunoassays to identify and quantify N-terminally elongated Aß peptide variants. Antibodies against these Aß variants were characterised by peptide microarrays and employed for the immunohistochemical analyses of human brain samples. RESULTS: In this study, we discovered additional ADAMTS4 cleavage sites in APP. These were located N-terminal to Asp-(1) in the Aß peptide sequence between residues Glu-(-7) and Ile-(-6) as well as Glu-(-4) and Val-(-3), resulting in the release of N-terminally elongated Aß-6-x and Aß-3-x peptides, of which the latter serve as a component in a promising Aß-based plasma biomarker. Aß-6/-3-40 peptides were detected in supernatants of various cell lines and in the cerebrospinal fluid (CSF), and ADAMTS4 enzyme activity promoted the release of Aß-6/-3-x peptides. Furthermore, by immunohistochemistry, a subset of AD cases displayed evidence of extracellular and vascular localization of N-terminally elongated Aß-6/-3-x peptides. DISCUSSION: The current findings implicate ADAMTS4 in both the pathological process of Aß peptide aggregation and in the early detection of amyloid pathology in AD.


Assuntos
Proteína ADAMTS4 , Doença de Alzheimer , Peptídeos beta-Amiloides , Encéfalo , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Proteína ADAMTS4/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Idoso , Masculino , Feminino , Idoso de 80 Anos ou mais
2.
Life (Basel) ; 13(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37109582

RESUMO

Senile plaques consisting of amyloid-beta (Aß) peptides are a major pathological hallmark of Alzheimer's disease (AD). Aß peptides are heterogeneous regarding the exact length of their amino- and carboxy-termini. Aß1-40 and Aß1-42 are often considered to represent canonical "full-length" Aß species. Using immunohistochemistry, we analyzed the distribution of Aß1-x, Aßx-42 and Aß4-x species in amyloid deposits in the subiculum, hippocampus and cortex in 5XFAD mice during aging. Overall plaque load increased in all three brain regions, with the subiculum being the area with the strongest relative plaque coverage. In the subiculum, but not in the other brain regions, the Aß1-x load peaked at an age of five months and decreased thereafter. In contrast, the density of plaques positive for N-terminally truncated Aß4-x species increased continuously over time. We hypothesize that ongoing plaque remodeling takes place, leading to a conversion of deposited Aß1-x peptides into Aß4-x peptides in brain regions with a high Aß plaque burden.

3.
J Neurosci ; 42(1): 16-32, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34764155

RESUMO

A fundamental regulator of neuronal network development and plasticity is the extracellular matrix (ECM) of the brain. The ECM provides a scaffold stabilizing synaptic circuits, while the proteolytic cleavage of its components and cell surface proteins are thought to have permissive roles in the regulation of plasticity. The enzymatic proteolysis is thought to be crucial for homeostasis between stability and reorganizational plasticity and facilitated largely by a family of proteinases named matrix metalloproteinases (MMPs). Here, we investigated whether MMP2 and MMP9 play a role in mediating adult primary visual cortex (V1) plasticity as well as stroke-induced impairments of visual cortex plasticity in mice. In healthy adult mice, selective inhibition of MMP2/9 for 7 d suppressed ocular dominance plasticity. In contrast, brief inhibition of MMP2/9 after a cortical stroke rescued compromised plasticity. Our data indicate that the proteolytic activity of MMP2 and MMP9 is critical and required to be within a narrow range to allow adult visual plasticity.SIGNIFICANCE STATEMENT Learning and recovery from injuries depend on the plasticity of neuronal connections. The brain's extracellular matrix (ECM) provides a scaffold for stabilizing synaptic circuits, while its enzymatic proteolysis is hypothesized to regulate homeostasis between stability and reorganizational plasticity. ECM digestion is facilitated by a family of matrix metalloproteinases (MMPs). Here, we show that treatments that inhibit MMP2/9 can either inhibit or rescue cortical plasticity depending on cortical state: in the visual cortex of healthy adult mice, inhibition of MMP2/9 suppressed cortical plasticity. In contrast, brief inhibition of MMP2/9 after a stroke rescued compromised plasticity. Our data provide strong evidence that an optimal level of MMP2/9 proteolytic activity is crucial for adult visual plasticity.


Assuntos
Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Plasticidade Neuronal/fisiologia , Córtex Visual Primário/enzimologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA