Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38921883

RESUMO

Fungal growth on construction materials in tropical climates can degrade aesthetics and manifestations on modern and historical sick buildings, affecting the health of their inhabitants. This study synthesized ZnO nanoparticles with enhanced antifungal properties using a precipitation method. Different concentrations (25%, 50%, and 100%) of Eichhornia crassipes aqueous extract were used with Zn(NO3)2·6H2O as the precursor to evaluate their spectroscopic, morphological, textural, and antifungal properties. X-ray diffraction confirmed the hexagonal wurtzite phase of ZnO with crystallite sizes up to 20 nm. Fourier-transform infrared spectroscopy identified absorption bands at 426, 503, and 567 cm-1 for ZnO-100, ZnO-50, and ZnO-25, respectively. Nitrogen physisorption indicated a type II isotherm with macropores and a fractal dimension coefficient near 2 across all concentrations. Polydispersity index analysis showed that ZnO-50 had a higher PDI, indicating a broader size distribution, while ZnO-25 and ZnO-100 exhibited lower PDI values, reflecting uniform and monodisperse particle sizes. FESEM observations revealed semi-spherical ZnO morphologies prone to agglomeration, particularly in ZnO-25. Antifungal tests highlighted ZnO-25 as the most effective, especially against Phoma sp. with an MFC/MIC ratio of 78 µg/mL. Poisoned plate assays demonstrated over 50% inhibition at 312 µg/mL for all tested fungi, outperforming commercial antifungals. The results indicate that ZnO NPs synthesized using E. crassipes extract effectively inhibit fungal growth on construction materials. This procedure offers a practical approach to improving the durability of building aesthetics and may contribute to reducing the health risks associated with exposure to fungal compounds.

2.
Plants (Basel) ; 12(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36987062

RESUMO

In this study, the antifungal, biosurfactant and bioemulsifying activity of the lipopeptides produced by the marine bacterium Bacillus subtilis subsp. spizizenii MC6B-22 is presented. The kinetics showed that at 84 h, the highest yield of lipopeptides (556 mg/mL) with antifungal, biosurfactant, bioemulsifying and hemolytic activity was detected, finding a relationship with the sporulation of the bacteria. Based on the hemolytic activity, bio-guided purification methods were used to obtain the lipopeptide. By TLC, HPLC and MALDI-TOF, the mycosubtilin was identified as the main lipopeptide, and it was further confirmed by NRPS gene clusters prediction based on the strain's genome sequence, in addition to other genes related to antimicrobial activity. The lipopeptide showed a broad-spectrum activity against ten phytopathogens of tropical crops at a minimum inhibitory concentration of 400 to 25 µg/mL and with a fungicidal mode of action. In addition, it exhibited that biosurfactant and bioemulsifying activities remain stable over a wide range of salinity and pH and it can emulsify different hydrophobic substrates. These results demonstrate the potential of the MC6B-22 strain as a biocontrol agent for agriculture and its application in bioremediation and other biotechnological fields.

3.
Microorganisms ; 10(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35888984

RESUMO

Halotolerant bacteria with biosurfactant (BS) and bioemulsifiers (BE) activity can coexist in Karstic sinkholes with marine influence. Two sinkholes in the Yucatan peninsula were selected to isolate bacteria with BE and BS activity stable in NaCl. The optimal time, the effect of nitrogen and carbon source in the medium, and the conditions (agitation, pH and salinity) for the production of BS and BE compounds in planktonic and sessile (stimulate the formation of biofilms in cell roller) culture were determined. Eighty strains showed the highest emulsification activity (EI24 ≥ 50%) and drop-collapse ≥ 4 mm. 87% of the strains are moderately halotolerant, and 21% bordered the limit of extreme halotolerance. Twenty-four strains maintained or improved their BS and BE activity under salinity conditions at 5% and 10%, being the most active genera Bacillus, Paenibacillus and Lysinibacillus, identified by sequencing of the 16S rRNA gene. The results show that the nitrogen source positively affects the BS and BE activity, regardless of the type of culture. The sessile culture markedly stimulated BS activity with significant differences. However, we did not find a greater influence on the culture conditions. The results suggest that halotolerant bacteria from sinkholes could be implemented in bioremediation and other biotechnological applications.

4.
J Fungi (Basel) ; 8(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35049962

RESUMO

The humid tropical environment provides an ideal place for developing a high diversity of plants; this is why it is an interesting site for the enzymatic bioprospecting of fungi that are responsible for the recycling of organic matter in an efficient and accelerated way and whose enzymes could have multiple biotechnological applications. For this study, 1250 isolates of macroscopic and microscopic fungal morphotypes were collected from soil, leaf litter, and wood. One hundred and fifty strains (50 from each source) were selected for the enzymatic screening. From the first phase, 51 strains with positive activity for laccase, protease, amylase, xylanase, and lipase enzymes were evaluated, of which 20 were isolated from leaf litter, 18 from the soil, and 13 from wood. The 10 best strains were selected for the enzymatic quantification, considering the potency index and the production of at least two enzymes. High laccase activity was detected for Trametes villosa FE35 and Marasmius sp. CE25 (1179 and 710.66 U/mg, respectively), while Daedalea flavida PE47 showed laccase (521.85 U/mg) and protease activities (80.66 U/mg). Fusarium spp. PH79 and FS400 strains had amylase (14.0 U/mg, 49.23 U/mg) and xylanase activities (40.05 U/mg, 36.03 U/mg) respectively. These results confirm the enzymatic potential of fungi that inhabit little-explored tropical rainforests with applications in industry.

5.
PLoS One ; 12(12): e0188443, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29211748

RESUMO

The assembly of fungal communities on stone materials is mainly influenced by the differential bioreceptivity of such materials and environmental conditions. However, little is known about the role of fungal interactions in the colonization and establishment of fungal species. We analyzed the effects of intra- and interspecific interactions between 11 species of fungi in oligotrophic and copiotrophic media and on limestone coupons. In a previous study, these species were the most frequently isolated in the epilithic biofilms of limestone walls exposed to a subtropical climate. In the culture media, we found a greater frequency of intra- and interspecific inhibitory effects in the oligotrophic medium than in the copiotrophic medium. On the limestone coupons, all fungi were able to establish; however, the colonization success rate varied significantly. Cladosporium cladosporioides had a less extensive colonization in isolation (control) than in dual interactions (coexistence) with other species. Phoma eupyrena exhibited the highest colonization success rate and competitive dominance among all tested species. X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses revealed that Pestalotiopsis maculans and Paraconiothyrium sp. produced calcium oxalate crystals during their growth on coupon surfaces, both in isolation and in dual interactions. Our results demonstrate that interactions between abundant fungal species influence the fungal colonization on substrates, the biomineralization and the fungal community assemblage growing in limestone biofilms.


Assuntos
Carbonato de Cálcio , Fungos/isolamento & purificação , Meios de Cultura , Fungos/classificação , Microscopia Eletrônica de Varredura , Especificidade da Espécie , Difração de Raios X
6.
Front Microbiol ; 7: 201, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26941725

RESUMO

Soil and rock surfaces support microbial communities involved in mineral weathering processes. Using selective isolation, fungi were obtained from limestone surfaces of Mayan monuments in the semi-arid climate at Yucatan, Mexico. A total of 101 isolates representing 53 different taxa were studied. Common fungi such as Fusarium, Pestalotiopsis, Trichoderma, and Penicillium were associated with surfaces and were, probably derived from airborne spores. In contrast, unusual fungi such as Rosellinia, Annulohypoxylon, and Xylaria were predominantly identified from mycelium particles of biofilm biomass. Simulating oligotrophic conditions, agar amended with CaCO3 was inoculated with fungi to test for carbonate activity. A substantial proportion of fungi, in particular those isolated from mycelium (59%), were capable of solubilizing calcium by means of organic acid release, notably oxalic acid as evidenced by ion chromatography. Contrary to our hypothesis, nutrient level was not a variable influencing the CaCO3 solubilization ability among isolates. Particularly active fungi (Annulohypoxylon stygium, Penicillium oxalicum, and Rosellinia sp.) were selected as models for bioweathering experiments with limestone-containing mesocosms to identify if other mineral phases, in addition to oxalates, were linked to bioweathering processes. Fungal biofilms were seen heavily covering the stone surface, while a biomineralized front was also observed at the stone-biofilm interface, where network of hyphae and mycogenic crystals was observed. X-ray diffraction analysis (XRD) identified calcite as the main phase, along with whewellite and wedellite. In addition, lower levels of citrate were detected by Attenuated Total Reflectance-Fourier-Transform Infrared Spectroscopy (ATR-FTIR). Overall, our results suggest that a diverse fungal community is associated with limestone surfaces insemi-arid climates. A subset of this community is geochemically active, excreting organic acids under quasi-oligotrophic conditions, suggesting that the high metabolic cost of exuding organic acids beneficial under nutrient limitation. Oxalic acid release may deteriorate or stabilize limestone surfaces, depending on microclimatic dynamics.

7.
Fungal Biol ; 116(10): 1064-72, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23063185

RESUMO

Little is known about the dynamics of succession of fungi on limestone exposed in subtropical environments. In this study, the colonization of experimental blocks of compact and porous limestone by a fungal community derived from natural biofilms occurring on Structure X from the archaeological site of Becán (México), was studied using a cultivation-dependent approach after short-term (9 m) exposure in order to provide a preliminary insight of the colonization process under seminatural conditions. Microbial growth seen as the change of colour of stone surfaces to black/dark green was more abundant on the porous limestone. There was a fairly clear difference in microbial colonization between the onset of the experiment and the 6th month for both limestone types, but no significant increase in the colonization of coupons occurred between months 6 and 9. This could be related to the low rainfall expected for this period, corresponding to the dry season. A total of 977 isolates were obtained. From these, 138 sterile fungi were unidentified, 380 could only be assigned to the order Sphaeropsidales; the remaining isolates (459) were grouped into 27 genera and 99 different species. Nearly all detected fungal species belonged to the Ascomycota (90 %). Rare taxa (species represented by one to three isolates) included the recently described genus Elasticomyces, several species of genera Hyalodendron, Monodyctis, Papulospora, Curvularia, and Septoria. Other taxa were Minimedusa and Gliomastix luzulae, which have not been previously described for stone environments. Abundant fungi included several species of the common genera Cladosporium, Alternaria, and Taeniolella typical for a range of habitats. Succession of populations was observed for certain taxa, this shift in the composition of fungal communities was more evident in porous limestone. After 6 m of exposure, species of the genera Scolecobasidium, Hyalodendron, and Taeniolella were predominant, while after 9 m, the predominant species belonged to the genera Curvularia and Alternaria, particularly on porous stone. These results suggest that Curvularia and Alternaria replaced other fungi, due to a higher tolerance towards low levels of available water during the dry season. Higher levels of water within the porous stone, keep longer periods of microbial activity, minimizing the impact of desiccation. This study contributes to understand the diversity of fungal communities in stone surfaces in subtropical settings and the dynamics of colonization on limestone.


Assuntos
Biota , Carbonato de Cálcio , Microbiologia Ambiental , Fungos/classificação , Fungos/isolamento & purificação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA