Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Pain ; 18: 17448069221111155, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35712882

RESUMO

Abnormal pain has recently been estimated to affect ∼50 million adults each year within the United States. With many treatment options for abnormal pain, such as opioid analgesics, carrying numerous deleterious side effects, research into safer and more effective treatment options is crucial. To help elucidate the mechanisms controlling nociceptive sensitivity, the Drosophila melanogaster larval nociception model has been used to characterize well-conserved pathways through the use of genetic modification and/or injury to alter the sensitivity of experimental animals. Mammalian models have provided evidence of ß-catenin signaling involvement in neuropathic pain development. By capitalizing on the conserved nature of ß-catenin functions in the fruit fly, here we describe a role for Armadillo, the fly homolog to mammalian ß-catenin, in regulating baseline sensitivity in the primary nociceptor of the fly, in the absence of injury, using under- and over-expression of Armadillo in a cell-specific manner. Underexpression of Armadillo resulted in hyposensitivity, while overexpression of wild-type Armadillo or expression of a degradation-resistant Armadillo resulted in hypersensitivity. Neither underexpression nor overexpression of Armadillo resulted in observed dendritic morphological changes that could contribute to behavioral phenotypes observed. These results showed that focused manipulation of Armadillo expression within the nociceptors is sufficient to modulate baseline response in the nociceptors to a noxious stimulus and that these changes are not shown to be associated with a morphogenetic effect.


Assuntos
Proteínas do Domínio Armadillo , Proteínas de Drosophila , Nociceptividade , Fatores de Transcrição , beta Catenina , Animais , Analgésicos Opioides , beta Catenina/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dor , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo
2.
Mol Pain ; 17: 17448069211037401, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34399634

RESUMO

Chronic pain is a debilitating condition affecting millions of people worldwide, and an improved understanding of the pathophysiology of chronic pain is urgently needed. Nociceptors are the sensory neurons that alert the nervous system to potentially harmful stimuli such as mechanical pressure or noxious thermal temperature. When an injury occurs, the nociceptive threshold for pain is reduced and an increased pain signal is produced. This process is called nociceptive sensitization. This sensitization normally subsides after the injury is healed. However, dysregulation can occur which results in sensitization that persists after the injury has healed. This process is thought to perpetuate chronic pain. The Hedgehog (Hh) signaling pathway has been previously implicated in nociceptive sensitization in response to injury in Drosophila melanogaster. Downstream of Hh signaling, the Bone Morphogenetic Protein (BMP) pathway has also been shown to be necessary for this process. Here, we describe a role for nuclear components of BMP's signaling pathway in the formation of injury-induced nociceptive sensitization. Brinker (Brk), and Schnurri (Shn) were suppressed in nociceptors using an RNA-interference (RNAi) "knockdown" approach. Knockdown of Brk resulted in hypersensitivity in the absence of injury, indicating that it normally acts to suppress nociceptive sensitivity. Animals in which transcriptional activator Shn was knocked down in nociceptors failed to develop normal allodynia after ultraviolet irradiation injury, indicating that Shn normally acts to promote hypersensitivity after injury. These results indicate that Brk-related transcription regulators play a crucial role in the formation of nociceptive sensitization and may therefore represent valuable new targets for pain-relieving medications.


Assuntos
Drosophila melanogaster/metabolismo , Nociceptividade/fisiologia , Dor/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica/genética , Proteínas Hedgehog/metabolismo , Nociceptores/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
4.
Mol Pain ; 14: 1744806918802703, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30259786

RESUMO

Background Chronic pain affects millions of people worldwide; however, its cellular and molecular mechanisms have not been completely elucidated. It is thought that chronic pain is triggered by nociceptive sensitization, which produces elevated nocifensive responses. A model has been developed in Drosophila melanogaster to investigate the underlying mechanisms of chronic pain using ultraviolet-induced tissue injury to trigger thermal allodynia, a nociceptive hypersensitivity to a normally innocuous stimulus. Larvae were assayed for their behavioral latencies to produce a distinct avoidance response under different thermal conditions. Previously, Decapentaplegic, a member of the Bone Morphogenetic Protein (BMP) family and orthologous to mammalian BMP2/4, was shown to be necessary for the induction of allodynia. Here, we further investigate the BMP pathway to identify other essential molecules necessary to activate the nociceptive sensitization pathway. Results Using the GAL4-UAS-RNAi system to induce a cell-specific knockdown of gene expression, we further explored BMP pathway components to identify other key players in the induction of nociceptive sensitization by comparing the responses of manipulated animals to those of controls. Here, we show that a second BMP, Glass Bottom Boat, and its receptor Wishful Thinking are both necessary for injury-induced thermal allodynia since the formation of sensitization was found to be severely attenuated when either of these components was suppressed. The effects on pain perception appear to be specific to the sensitization system, as the ability to respond to a normally noxious stimulus in the absence of injury was left intact, and no nociceptor morphological defects were observed. Conclusion These results provide further support of the hypothesis that the BMP pathway plays a crucial role in the development of nociceptive sensitization. Because of its strong conservation between invertebrates and mammals, the BMP pathway may be worthy of future investigation for the development of targeted treatments to alleviate chronic pain.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Ferimentos e Lesões/complicações , Animais , Animais Geneticamente Modificados , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Proteínas Morfogenéticas Ósseas/genética , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hiperalgesia/patologia , Neurônios/patologia , Nociceptividade , Interferência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Ferimentos e Lesões/etiologia
5.
J Neurosci ; 37(35): 8524-8533, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855331

RESUMO

Nociceptive sensitization is a common feature in chronic pain, but its basic cellular mechanisms are only partially understood. The present study used the Drosophila melanogaster model system and a candidate gene approach to identify novel components required for modulation of an injury-induced nociceptive sensitization pathway presumably downstream of Hedgehog. This study demonstrates that RNAi silencing of a member of the Bone Morphogenetic Protein (BMP) signaling pathway, Decapentaplegic (Dpp), specifically in the Class IV multidendritic nociceptive neuron, significantly attenuated ultraviolet injury-induced sensitization. Furthermore, overexpression of Dpp in Class IV neurons was sufficient to induce thermal hypersensitivity in the absence of injury. The requirement of various BMP receptors and members of the SMAD signal transduction pathway in nociceptive sensitization was also demonstrated. The effects of BMP signaling were shown to be largely specific to the sensitization pathway and not associated with changes in nociception in the absence of injury or with changes in dendritic morphology. Thus, the results demonstrate that Dpp and its pathway play a crucial and novel role in nociceptive sensitization. Because the BMP family is so strongly conserved between vertebrates and invertebrates, it seems likely that the components analyzed in this study represent potential therapeutic targets for the treatment of chronic pain in humans.SIGNIFICANCE STATEMENT This report provides a genetic analysis of primary nociceptive neuron mechanisms that promote sensitization in response to injury. Drosophila melanogaster larvae whose primary nociceptive neurons were reduced in levels of specific components of the BMP signaling pathway, were injured and then tested for nocifensive responses to a normally subnoxious stimulus. Results suggest that nociceptive neurons use the BMP2/4 ligand, along with identified receptors and intracellular transducers to transition to a sensitized state. These findings are consistent with the observation that BMP receptor hyperactivation correlates with bone abnormalities and pain sensitization in fibrodysplasia ossificans progressiva (Kitterman et al., 2012). Because nociceptive sensitization is associated with chronic pain, these findings indicate that human BMP pathway components may represent targets for novel pain-relieving drugs.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Sensibilização do Sistema Nervoso Central/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Nociceptividade/fisiologia , Nociceptores/fisiologia , Proteínas Smad/metabolismo , Animais , Limiar da Dor/fisiologia , Transdução de Sinais/fisiologia
6.
PLoS One ; 10(10): e0140785, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26495837

RESUMO

Steroid hormones organize many aspects of development, including that of the nervous system. Steroids also play neuromodulatory and other activational roles, including regulation of sensitivity to painful stimuli in mammals. In Drosophila, ecdysteroids are the only steroid hormones, and therefore the fly represents a simplified model system in which to explore mechanisms of steroid neuromodulation of nociception. In this report, we present evidence that ecdysteroids, acting through two isoforms of their nuclear ecdysone receptor (EcR), modulate sensitivity to noxious thermal and mechanical stimuli in the fly larva. We show that EcRA and EcRB1 are expressed by third instar larvae in the primary nociceptor neurons, known as the class IV multidendritic neurons. Suppression of EcRA by RNA interference in these cells leads to hyposensitivity to noxious stimulation. Suppression of EcRB1 leads to reduction of dendritic branching and length of nociceptor neurons. We show that specific isoforms of the ecdysone receptor play critical cell autonomous roles in modulating the sensitivity of nociceptor neurons and may indicate human orthologs that represent targets for novel analgesic drugs.


Assuntos
Dendritos/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Insetos/metabolismo , Nociceptores/metabolismo , Receptores de Esteroides/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Imuno-Histoquímica , Proteínas de Insetos/genética , Larva/genética , Larva/metabolismo , Atividade Motora/genética , Atividade Motora/fisiologia , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Receptores de Esteroides/genética , Estresse Mecânico , Temperatura
7.
J Vis Exp ; (98): e52684, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25993121

RESUMO

Drosophila larvae are used in many behavioral studies, yet a simple device for measuring basic parameters of larval activity has not been available. This protocol repurposes an instrument often used to measure adult activity, the TriKinetics Drosophila activity monitor (MB5 Multi-Beam Activity Monitor) to study larval activity. The instrument can monitor the movements of animals in 16 individual 8 cm glass assay tubes, using 17 infrared detection beams per tube. Logging software automatically saves data to a computer, recording parameters such as number of moves, times sensors were triggered, and animals' positions within the tubes. The data can then be analyzed to represent overall locomotion and/or position preference as well as other measurements. All data are easily accessible and compatible with basic graphing and data manipulation software. This protocol will discuss how to use the apparatus, how to operate the software and how to run a larval activity assay from start to finish.


Assuntos
Drosophila/fisiologia , Atividade Motora/fisiologia , Animais , Larva , Movimento/fisiologia , Software
8.
Behav Genet ; 37(3): 507-12, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17238001

RESUMO

Male-male courtship is infrequent among mature adult Drosophila melanogaster. After pairs of mature adult males expressing a temperature-sensitive allele of the ecdysone receptor (EcR) gene were treated at a restrictive temperature, however, they engaged in elevated levels of male-male courtship. EcR-deficient males courted wildtype males and females, but were not courted by wildtype males. These results suggest that the ecdysone steroid hormone system may have a role in courtship initiation by adult male fruit flies.


Assuntos
Comportamento de Escolha/fisiologia , Drosophila melanogaster/genética , Homossexualidade Masculina/genética , Receptores de Esteroides/deficiência , Receptores de Esteroides/genética , Comportamento Sexual Animal , Animais , Cruzamentos Genéticos , Drosophila melanogaster/fisiologia , Feminino , Masculino , Modelos Animais , Transdução de Sinais
9.
J Comp Neurol ; 488(2): 129-39, 2005 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-15924338

RESUMO

Grasshopper sound production, in the context of mate finding, courtship, and rivalry, is controlled by the central body complex in the protocerebrum. Stimulation of muscarinic acetylcholine receptors in the central complex has been demonstrated to stimulate specific singing in various grasshoppers including the species Chorthippus biguttulus. Sound production elicited by stimulation of muscarinic acetylcholine receptors in the central complex is inhibited by co-applications of various drugs activating the nitric oxide/cyclic guanosine monophosphate (cGMP) signaling pathway. The nitric oxide-donor sodium nitroprusside caused a reversible suppression of muscarine-stimulated sound production that could be blocked by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxaline-1-one (ODQ), which prevents the formation of cGMP by specifically inhibiting soluble guanylyl cyclase. Furthermore, injections of both the membrane-permeable cGMP analog 8-Br-cGMP and the specific inhibitor of the cGMP-degrading phosphodiesterase Zaprinast reversibly inhibited singing. To identify putative sources of nitric oxide, brains of Ch. biguttulus were subjected to both nitric oxide synthase immunocytochemistry and NADPH-diaphorase staining. Among other areas known to express nitric oxide synthase, both procedures consistently labeled peripheral layers in the upper division of the central body complex, suggesting that neurons supplying this neuropil contain nitric oxide synthase and may generate nitric oxide upon activation. Exposure of dissected brains to nitric oxide and 3-(5'hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) induced cGMP-associated immunoreactivity in both the upper and lower division. Therefore, both the morphological and pharmacological data presented in this study strongly suggest a contribution of the nitric oxide/cGMP signaling pathway to the central control of grasshopper sound production.


Assuntos
Encéfalo/fisiologia , GMP Cíclico/fisiologia , Óxido Nítrico/fisiologia , Transdução de Sinais/fisiologia , Vocalização Animal/fisiologia , Animais , Comportamento Animal , Encéfalo/efeitos dos fármacos , GMP Cíclico/metabolismo , Interações Medicamentosas , Ativadores de Enzimas/farmacologia , Inibidores Enzimáticos/farmacologia , Lateralidade Funcional/efeitos dos fármacos , Gafanhotos , Imuno-Histoquímica/métodos , Indazóis/farmacologia , Masculino , Muscarina/farmacologia , Agonistas Muscarínicos/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Nitrofenóis/farmacologia , Compostos Organofosforados/farmacologia , Fatores de Tempo , Vocalização Animal/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA