Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 89(3): e202300373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37909792

RESUMO

This work reports an efficient method for facile synthesis of hierarchically porous carbon (WB-AC) utilizing wheat bran waste. Obtained carbon showed 2.47 mmol g-1 CO2 capture capacity with good CO2 /N2 selectivity and 27.35 to 29.90 kJ mol-1 isosteric heat of adsorption. Rapid removal of MO dye was observed with a capacity of ~555 mg g-1 . Moreover, WB-AC demonstrated a good OER activity with 0.35 V low overpotential at 5 mA cm-2 and a Tafel slope of 115 mV dec-1 . It also exhibited high electrocatalytic HER activity with 57 mV overpotential at 10 mA cm-2 and a Tafel slope of 82.6 mV dec-1 . The large SSA (757 m2 g-1 ) and total pore volume (0.3696 cm3 g-1 ) result from N2 activation contributing to selective CO2 uptake, high and rapid dye removal capacity and superior electrochemical activity (OER/HER), suggesting the use of WB-AC as cost effective adsorbent and metal free electrocatalyst.

2.
ACS Omega ; 6(26): 17071-17085, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34250364

RESUMO

Nanostructured titanium dioxide (TiO2) has a potential platform for the removal of organic contaminants, but it has some limitations. To overcome these limitations, we devised a promising strategy in the present work, the heterostructures of TiO2 sensitized by molybdenum disulfide (MoS2) nanoflowers synthesized by the mechanochemical route and utilized as an efficient photocatalyst for methyl orange (MO) degradation. The surface of TiO2 sensitized by MoS2 was comprehensively characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence spectroscopy (PL), Brunauer-Emmett-Teller (BET) surface area, and thermogravimetric analysis (TGA). From XRD results, the optimized MoS2-TiO2 (5.0 wt %) nanocomposite showcases the lowest crystallite size of 14.79 nm than pristine TiO2 (20 nm). The FT-IR and XPS analyses of the MoS2-TiO2 nanocomposite exhibit the strong interaction between MoS2 and TiO2. The photocatalytic results show that sensitization of TiO2 by MoS2 drastically enhanced the photocatalytic activity of pristine TiO2. According to the obtained results, the optimal amount of MoS2 loading was assumed to be 5.0 wt %, which exhibited a 21% increment of MO photodegradation efficiency compared to pristine TiO2 under UV-vis light. The outline of the overall study describes the superior photocatalytic performance of 5.0 wt % MoS2-TiO2 nanocomposite which is ascribed to the delayed recombination by efficient charge transfer, high surface area, and elevated surface oxygen vacancies. The context of the obtained results designates that the sensitization of TiO2 with MoS2 is a very efficient nanomaterial for photocatalytic applications.

3.
ACS Omega ; 5(1): 131-144, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31956760

RESUMO

A magnetically retrievable ferrocene appended supported ionic liquid phase (SILP) photocatalyst containing a molybdate anion has been synthesized and characterized by Fourier transform infrared, X-ray photoelectron spectroscopy, transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, and vibrating sample magnetometer analysis. The optical properties of the photocatalyst were probed by photoluminescence and UV-vis diffuse reflectance spectroscopy. The discharge of undesirable dye effluents from textile industrial plants in the environment is the major concern of environmental pollution and toxicity. In this context, we employed the as-prepared SILP photocatalyst for degradation of methyl orange (MO) under UV light (365 nm) irradiation, and subsequently, recycling studies were performed. The histological alteration in gills of the fish is employed as a tool for monitoring toxins in the environment. In view of this, the histo-toxicological assessment on freshwater fish Tilapia mossambica gills asserted the damage of secondary gill lamellae due to MO. Conversely, structural modifications in the gill architecture were not observed by virtue of photodegraded products confirming that the degraded product is nontoxic in nature. Additionally, the normal behavior of fishes on exposure to photodegraded products reveals that research findings are beneficial for the aquatic ecosystem.

4.
J Colloid Interface Sci ; 483: 249-260, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27560497

RESUMO

We describe herein a unique approach to synthesize zinc oxide-silica-silver (ZnO-SiO2-Ag) nanocomposite, in a simple, one-pot process. The typical process for ZnO synthesis by alkaline precipitation of zinc salts has been tweaked to replace alkali by alkaline sodium silicate. The free acid from zinc salts helps in the synthesis of silica nanoparticles, whereas the alkalinity of sodium silicate precipitates the zinc salts. Addition of silver ions into the reaction pot prior to addition of sodium silicate, and subsequent reduction by borohydride, gives additional functionality of metallic centres for catalytic applications. The synthesis strategy is based on our recent work typically involving acid-base type of cross-reactions and demonstrates a novel strategy to synthesize nanocomposites in a one-pot approach. Each component in the composite offers a unique feature. ZnO besides displaying mild catalytic and anti-bacterial behaviour is an excellent and a cheap 3-D support for heterogeneous catalysis. Silver nanoparticles enhance the catalytic & anti-bacterial properties of ZnO. Silica is an important part of the composite; which not only "glues" the two nanoparticles thereby stabilizing the nanocomposite, but also significantly enhances the surface area of the composite; which is an attractive feature of any catalyst composite. The nanocomposite is found to show excellent catalytic performance with very high turnover frequencies (TOFs) when studied for catalytic reduction of Rhodamine B (RhB) and 4-Nitrophenol (4-NP). Additionally, the composite has been tested for its anti-bacterial properties on three different bacterial strains i.e. E. coli, B. Cereus and Bacillus firmus. The mechanism for enhancement of catalytic performance has been probed by understanding the role of silica in offering accessibility to the catalyst via its porous high surface area network. The nanocomposite has been characterized by a host of different analytical techniques. The uniqueness of our product and process stems from the novel synthesis strategy, the choice and combination of the three moieties, increased surface area offered by silica, and cost effectiveness, thereby making our product and process commercially viable and sustainable for industrial applications.


Assuntos
Antibacterianos/síntese química , Nanopartículas Metálicas/química , Nanocompostos/química , Dióxido de Silício/química , Prata/química , Óxido de Zinco/química , Álcalis/química , Antibacterianos/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Bacillus firmus/efeitos dos fármacos , Bacillus firmus/crescimento & desenvolvimento , Boroidretos/química , Catálise , Precipitação Química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Nanocompostos/ultraestrutura , Nitrofenóis/química , Oxirredução , Rodaminas/química , Silicatos/química , Propriedades de Superfície
5.
J Photochem Photobiol B ; 154: 24-33, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26658629

RESUMO

A simple and effective route for the synthesis of ZnO/Ag2O nanocomposites with different weight ratios (4:1 to 4:4) have been successfully obtained by combination of thermal decomposition and precipitation technique. The structure, composition, morphology and optical properties of the as-prepared ZnO/Ag2O composites were characterized by XRD, FT-IR, EDS, SEM, TEM, UV-Vis DRS and PL, respectively. The photocatalytic performance of the photocatalysts was evaluated towards the degradation of a methyl orange (MO) under UV and visible light. More specifically, the results showed that the photocatalytic activity with highest rate constant of MO degradation over ZnO/Ag2O (4:2) nanocomposites is more than 22 and 4 times than those of pure ZnO and Ag2O under visible light irradiation, respectively. An improved photocatalytic activity was attributed to the formation of heterostructure between Ag2O and ZnO, the strong visible light absorption and more separation efficiency of photoinduced electron-hole pairs. Moreover, the ZnO/Ag2O (4:2) nanocomposite showed excellent stability towards the photodegradation of MO under visible light. Finally, a possible mechanism for enhanced charge separation and photodegrdation is proposed. Genotoxicity of MO before and after photodegradation was also evaluated by simple comet assay technique.


Assuntos
Compostos Azo/química , Luz , Nanocompostos/química , Óxidos/química , Fotólise/efeitos da radiação , Compostos de Prata/química , Óxido de Zinco/química , Animais , Compostos Azo/toxicidade , Carpas/genética , Catálise , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Cinética , Nanocompostos/ultraestrutura , Fotólise/efeitos dos fármacos , Raios Ultravioleta
6.
Luminescence ; 30(7): 1055-63, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25736374

RESUMO

Based on the known complexation ability between polyvinyl pyrrolidone (PVP) and fluorescein sodium (FL Na(+)), fluorescent PVP capped anthracene nanoparticles (PVP-ANPs) were prepared using a reprecipitation method for detection of fluorescein in aqueous solution using the fluorescence resonance energy transfer (FRET) approach. A dynamic light scattering histogram of PVP-ANPs showed narrower particle size distribution and the average particle size was 15 nm. The aggregation-induced enhanced emission (AIEE) of PVP-ANPs was red shifted from its monomer by 1087.22 cm(-1). The maximum emission was seen to occur at 420 nm. The presence of FL Na(+) in the vicinity of PVP-ANPs quenched the fluorescence of PVP-ANPs because of its adsorption on the surface of PVP-ANPs in aqueous suspension. The FL Na(+) and PVP-ANPs were brought close enough, typically to 7.89 nm, which was less than the distance of 10 nm that is required between the energy donor-acceptor molecule for efficient FRET. The quenching results fit into the Stern-Volmer relationship even at temperatures greater than ambient temperatures. The thermodynamic parameters determined from FRET results helped to propose binding mechanisms involving hydrophobic and electrostatic molecular interaction. The fluorescence quenching results were used further to develop an analytical method for estimation of fluorescein sodium from ophthalmic samples available commercially in the market.


Assuntos
Antracenos/química , Fluoresceína/análise , Fluorescência , Corantes Fluorescentes/química , Nanopartículas/química , Povidona/química , Transferência Ressonante de Energia de Fluorescência , Tamanho da Partícula , Soluções , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA