Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1184200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664184

RESUMO

Introduction: The ζ subunit is a potent inhibitor of the F1FO-ATPase of Paracoccus denitrificans (PdF1FO-ATPase) and related α-proteobacteria different from the other two canonical inhibitors of bacterial (ε) and mitochondrial (IF1) F1FO-ATPases. ζ mimics mitochondrial IF1 in its inhibitory N-terminus, blocking the PdF1FO-ATPase activity as a unidirectional pawl-ratchet and allowing the PdF1FO-ATP synthase turnover. ζ is essential for the respiratory growth of P. denitrificans, as we showed by a Δζ knockout. Given the vital role of ζ in the physiology of P. denitrificans, here, we assessed the evolution of ζ across the α-proteobacteria class. Methods: Through bioinformatic, biochemical, molecular biology, functional, and structural analyses of several ζ subunits, we confirmed the conservation of the inhibitory N-terminus of ζ and its divergence toward its C-terminus. We reconstituted homologously or heterologously the recombinant ζ subunits from several α-proteobacteria into the respective F-ATPases, including free-living photosynthetic, facultative symbiont, and intracellular facultative or obligate parasitic α-proteobacteria. Results and discussion: The results show that ζ evolved, preserving its inhibitory function in free-living α-proteobacteria exposed to broad environmental changes that could compromise the cellular ATP pools. However, the ζ inhibitory function was diminished or lost in some symbiotic α-proteobacteria where ζ is non-essential given the possible exchange of nutrients and ATP from hosts. Accordingly, the ζ gene is absent in some strictly parasitic pathogenic Rickettsiales, which may obtain ATP from the parasitized hosts. We also resolved the NMR structure of the ζ subunit of Sinorhizobium meliloti (Sm-ζ) and compared it with its structure modeled in AlphaFold. We found a transition from a compact ordered non-inhibitory conformation into an extended α-helical inhibitory N-terminus conformation, thus explaining why the Sm-ζ cannot exert homologous inhibition. However, it is still able to inhibit the PdF1FO-ATPase heterologously. Together with the loss of the inhibitory function of α-proteobacterial ε, the data confirm that the primary inhibitory function of the α-proteobacterial F1FO-ATPase was transferred from ε to ζ and that ζ, ε, and IF1 evolved by convergent evolution. Some key evolutionary implications on the endosymbiotic origin of mitochondria, as most likely derived from α-proteobacteria, are also discussed.

2.
iScience ; 26(5): 106626, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37192978

RESUMO

F1-ATPase (F1) is an ATP-driven rotary motor protein ubiquitously found in many species as the catalytic portion of FoF1-ATP synthase. Despite the highly conserved amino acid sequence of the catalytic core subunits: α and ß, F1 shows diversity in the maximum catalytic turnover rate Vmax and the number of rotary steps per turn. To study the design principle of F1, we prepared eight hybrid F1s composed of subunits from two of three genuine F1s: thermophilic Bacillus PS3 (TF1), bovine mitochondria (bMF1), and Paracoccus denitrificans (PdF1), differing in the Vmax and the number of rotary steps. The Vmax of the hybrids can be well fitted by a quadratic model highlighting the dominant roles of ß and the couplings between α-ß. Although there exist no simple rules on which subunit dominantly determines the number of steps, our findings show that the stepping behavior is characterized by the combination of all subunits.

3.
Microorganisms ; 10(7)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35889091

RESUMO

The F1FO-ATP synthase nanomotor synthesizes >90% of the cellular ATP of almost all living beings by rotating in the "forward" direction, but it can also consume the same ATP pools by rotating in "reverse." To prevent futile F1FO-ATPase activity, several different inhibitory proteins or domains in bacteria (ε and ζ subunits), mitochondria (IF1), and chloroplasts (ε and γ disulfide) emerged to block the F1FO-ATPase activity selectively. In this study, we analyze how these F1FO-ATPase inhibitory proteins have evolved. The phylogeny of the α-proteobacterial ε showed that it diverged in its C-terminal side, thus losing both the inhibitory function and the ATP-binding/sensor motif that controls this inhibition. The losses of inhibitory function and the ATP-binding site correlate with an evolutionary divergence of non-inhibitory α-proteobacterial ε and mitochondrial δ subunits from inhibitory bacterial and chloroplastidic ε subunits. Here, we confirm the lack of inhibitory function of wild-type and C-terminal truncated ε subunits of P. denitrificans. Taken together, the data show that ζ evolved to replace ε as the primary inhibitor of the F1FO-ATPase of free-living α-proteobacteria. However, the ζ inhibitory function was also partially lost in some symbiotic α-proteobacteria and totally lost in some strictly parasitic α-proteobacteria such as the Rickettsiales order. Finally, we found that ζ and IF1 likely evolved independently via convergent evolution before and after the endosymbiotic origin mitochondria, respectively. This led us to propose the ε and ζ subunits as tracer genes of the pre-endosymbiont that evolved into the actual mitochondria.

4.
Front Oncol ; 11: 664794, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367956

RESUMO

Lamivudine, also widely known as 3TC belongs to a family of nucleotide/nucleoside analogues of cytidine or cytosine that inhibits the Reverse Transcriptase (RT) of retroviruses such as HIV. Lamivudine is currently indicated in combination with other antiretroviral agents for the treatment of HIV-1 infection or for chronic Hepatitis B (HBV) virus infection associated with evidence of hepatitis B viral replication and active liver inflammation. HBV reactivation in patients with HBV infections who receive anticancer chemotherapy can be a life-threatening complication during and after the completion of chemotherapy. Lamivudine is used, as well as other antiretrovirals, to prevent the reactivation of the Hepatitis B virus during and after chemotherapy. In addition, Lamivudine has been shown to sensitize cancer cells to chemotherapy. Lamivudine and other similar analogues also have direct positive effects in the prevention of cancer in hepatitis B or HIV positive patients, independently of chemotherapy or radiotherapy. Recently, it has been proposed that Lamivudine might be also repurposed against SARS-CoV-2 in the context of the COVID-19 pandemic. In this review we first examine recent reports on the re-usage of Lamivudine or 3TC against the SARS-CoV-2, and we present docking evidence carried out in silico suggesting that Lamivudine may bind and possibly work as an inhibitor of the SARS-CoV-2 RdRp RNA polymerase. We also evaluate and propose assessment of repurposing Lamivudine as anti-SARS-CoV-2 and anti-COVID-19 antiviral. Secondly, we summarize the published literature on the use of Lamivudine or (3TC) before or during chemotherapy to prevent reactivation of HBV, and examine reports of enhanced effectiveness of radiotherapy in combination with Lamivudine treatment against the cancerous cells or tissues. We show that the anti-cancer properties of Lamivudine are well established, whereas its putative anti-COVID effect is under investigation. The side effects of lamivudine and the appearance of resistance to 3TC are also discussed.

5.
FEBS J ; 288(10): 3159-3163, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33377595

RESUMO

The F1 Fo -ATP synthase, a widely distributed nanomotor responsible of ATP synthesis, rotates its central rotor reversibly: In the clockwise direction when viewed from the Fo (with the observer facing the positive side of the energy transducing membrane and looking down into the negative side of the membrane), it functions as ATP synthase, while in counterclockwise sense, it operates as a proton-pumping ATP hydrolase. Regulation exerted by naturally occurring inhibitory proteins of the enzyme appears to function by avoiding ATP hydrolysis while preserving ATP synthesis. The work of Liu et al. describes an unbiased, elegant analytical pipeline that provides important insights into the inhibitory role of the ε-subunit of the bacterial F1 Fo -ATP synthase in vivo. We discuss if a gear-shifting versus a pawl-ratchet mechanism may explain the regulatory role of the ε-subunit.


Assuntos
Trifosfato de Adenosina , Trifosfato de Adenosina/metabolismo , Transporte de Íons , Subunidades Proteicas/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(47): 29647-29657, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33168750

RESUMO

The rotation of Paracoccus denitrificans F1-ATPase (PdF1) was studied using single-molecule microscopy. At all concentrations of adenosine triphosphate (ATP) or a slowly hydrolyzable ATP analog (ATPγS), above or below Km, PdF1 showed three dwells per turn, each separated by 120°. Analysis of dwell time between steps showed that PdF1 executes binding, hydrolysis, and probably product release at the same dwell. The comparison of ATP binding and catalytic pauses in single PdF1 molecules suggested that PdF1 executes both elementary events at the same rotary position. This point was confirmed in an inhibition experiment with a nonhydrolyzable ATP analog (AMP-PNP). Rotation assays in the presence of adenosine diphosphate (ADP) or inorganic phosphate at physiological concentrations did not reveal any obvious substeps. Although the possibility of the existence of substeps remains, all of the datasets show that PdF1 is principally a three-stepping motor similar to bacterial vacuolar (V1)-ATPase from Thermus thermophilus This contrasts with all other known F1-ATPases that show six or nine dwells per turn, conducting ATP binding and hydrolysis at different dwells. Pauses by persistent Mg-ADP inhibition or the inhibitory ζ-subunit were also found at the same angular position of the rotation dwell, supporting the simplified chemomechanical scheme of PdF1 Comprehensive analysis of rotary catalysis of F1 from different species, including PdF1, suggests a clear trend in the correlation between the numbers of rotary steps of F1 and Fo domains of F-ATP synthase. F1 motors with more distinctive steps are coupled with proton-conducting Fo rings with fewer proteolipid subunits, giving insight into the design principle the F1Fo of ATP synthase.


Assuntos
Mitocôndrias/metabolismo , Paracoccus denitrificans/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Hidrólise , Cinética , Rotação , Thermus thermophilus/metabolismo
7.
Nutrients ; 11(8)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349559

RESUMO

(1) Background: the composition of high-density lipoproteins (HDL) becomes altered during the postprandial state, probably affecting their functionality vis-à-vis the endothelium. Since acute coronary syndrome (ACS) in women is frequently associated with endothelial dysfunction, it is likely that HDL are unable to improve artery vasodilation in these patients. Therefore, we characterized HDL from women with ACS in fasting and postprandial conditions. We also determined whether microencapsulated pomegranate (MiPo) reverts the HDL abnormalities, since previous studies have suggested that this fruit improves HDL functionality. (2) Methods: Eleven women with a history of ACS were supplemented daily with 20 g of MiPo, for 30 days. Plasma samples were obtained during fasting and at different times, after a lipid load test to determine the lipid profile and paraoxonase-1 (PON1) activity. HDL were isolated by sequential ultracentrifugation to determine their size distribution and to assess their effect on endothelial function, by using an in vitro model of rat aorta rings. (3) Results: MiPo improved the lipid profile and increased PON1 activity, as previously reported, with fresh pomegranate juice. After supplementation with MiPo, the incremental area under the curve of triglycerides decreased to half of the initial values. The HDL distribution shifted from large HDL to intermediate and small-size particles during the postprandial period in the basal conditions, whereas such a shift was no longer observed after MiPo supplementation. Consistently, HDL isolated from postprandial plasma samples hindered the vasodilation of aorta rings, and this endothelial dysfunction was reverted after MiPo consumption. (4) Conclusions: MiPo exhibited the same beneficial effects on the lipid profile and PON1 activity as the previously reported fresh pomegranate. In addition, MiPo supplementation reverted the negative effects of HDL on endothelial function generated during the postprandial period in women with ACS.


Assuntos
Síndrome Coronariana Aguda/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Hipertrigliceridemia/tratamento farmacológico , Hipolipemiantes/administração & dosagem , Lipoproteínas HDL/sangue , Extratos Vegetais/administração & dosagem , Punica granatum , Período Pós-Prandial , Triglicerídeos/sangue , Vasodilatação/efeitos dos fármacos , Síndrome Coronariana Aguda/sangue , Síndrome Coronariana Aguda/diagnóstico , Administração Oral , Adulto , Animais , Arildialquilfosfatase/sangue , Biomarcadores/sangue , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Feminino , Frutas , Humanos , Hipertrigliceridemia/sangue , Hipertrigliceridemia/diagnóstico , Hipolipemiantes/efeitos adversos , Pessoa de Meia-Idade , Extratos Vegetais/efeitos adversos , Ratos Wistar , Fatores de Tempo , Resultado do Tratamento
8.
J Bioenerg Biomembr ; 50(5): 403-424, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30267331

RESUMO

The ATP synthase is a ubiquitous nanomotor that fuels life by the synthesis of the chemical energy of ATP. In order to synthesize ATP, this enzyme is capable of rotating its central rotor in a reversible manner. In the clockwise (CW) direction, it functions as ATP synthase, while in counter clockwise (CCW) sense it functions as an proton pumping ATPase. In bacteria and mitochondria, there are two known canonical natural inhibitor proteins, namely the ε and IF1 subunits. These proteins regulate the CCW F1FO-ATPase activity by blocking γ subunit rotation at the αDP/ßDP/γ subunit interface in the F1 domain. Recently, we discovered a unique natural F1-ATPase inhibitor in Paracoccus denitrificans and related α-proteobacteria denoted the ζ subunit. Here, we compare the functional and structural mechanisms of ε, IF1, and ζ, and using the current data in the field, it is evident that all three regulatory proteins interact with the αDP/ßDP/γ interface of the F1-ATPase. In order to exert inhibition, IF1 and ζ contain an intrinsically disordered N-terminal protein region (IDPr) that folds into an α-helix when inserted in the αDP/ßDP/γ interface. In this context, we revised here the mechanism and role of the ζ subunit as a unidirectional F-ATPase inhibitor blocking exclusively the CCW F1FO-ATPase rotation, without affecting the CW-F1FO-ATP synthase turnover. In summary, the ζ subunit has a mode of action similar to mitochondrial IF1, but in α-proteobacteria. The structural and functional implications of these intrinsically disordered ζ and IF1 inhibitors are discussed to shed light on the control mechanisms of the ATP synthase nanomotor from an evolutionary perspective.


Assuntos
Conformação Proteica em alfa-Hélice/fisiologia , Subunidades Proteicas/metabolismo , Rotação
9.
Biochim Biophys Acta Bioenerg ; 1859(9): 762-774, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29886048

RESUMO

The ATP synthase is a reversible nanomotor that gyrates its central rotor clockwise (CW) to synthesize ATP and in counter clockwise (CCW) direction to hydrolyse it. In bacteria and mitochondria, two natural inhibitor proteins, namely the ε and IF1 subunits, prevent the wasteful CCW F1FO-ATPase activity by blocking γ rotation at the αDP/ßDP/γ interface of the F1 portion. In Paracoccus denitrificans and related α-proteobacteria, we discovered a different natural F1-ATPase inhibitor named ζ. Here we revise the functional and structural data showing that this novel ζ subunit, although being different to ε and IF1, it also binds to the αDP/ßDP/γ interface of the F1 of P. denitrificans. ζ shifts its N-terminal inhibitory domain from an intrinsically disordered protein region (IDPr) to an α-helix when inserted in the αDP/ßDP/γ interface. We showed for the first time the key role of a natural ATP synthase inhibitor by the distinctive phenotype of a Δζ knockout mutant in P. denitrificans. ζ blocks exclusively the CCW F1FO-ATPase rotation without affecting the CW-F1FO-ATP synthase turnover, confirming that ζ is important for respiratory bacterial growth by working as a unidirectional pawl-ratchet PdF1FO-ATPase inhibitor, thus preventing the wasteful consumption of cellular ATP. In summary, ζ is a useful model that mimics mitochondrial IF1 but in α-proteobacteria. The structural, functional, and endosymbiotic evolutionary implications of this ζ inhibitor are discussed to shed light on the natural control mechanisms of the three natural inhibitor proteins (ε, ζ, and IF1) of this unique ATP synthase nanomotor, essential for life.


Assuntos
Trifosfato de Adenosina/metabolismo , Alphaproteobacteria/enzimologia , Inibidores Enzimáticos/administração & dosagem , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Paracoccus denitrificans/enzimologia , Proteínas/administração & dosagem , Sequência de Aminoácidos , Mitocôndrias/efeitos dos fármacos , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Conformação Proteica , Subunidades Proteicas , Homologia de Sequência , Proteína Inibidora de ATPase
10.
Cell Rep ; 22(4): 1067-1078, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29386127

RESUMO

The biological roles of the three natural F1FO-ATPase inhibitors, ε, ζ, and IF1, on cell physiology remain controversial. The ζ subunit is a useful model for deletion studies since it mimics mitochondrial IF1, but in the F1FO-ATPase of Paracoccus denitrificans (PdF1FO), it is a monogenic and supernumerary subunit. Here, we constructed a P. denitrificans 1222 derivative (PdΔζ) with a deleted ζ gene to determine its role in cell growth and bioenergetics. The results show that the lack of ζ in vivo strongly restricts respiratory P. denitrificans growth, and this is restored by complementation in trans with an exogenous ζ gene. Removal of ζ increased the coupled PdF1FO-ATPase activity without affecting the PdF1FO-ATP synthase turnover, and the latter was not affected at all by ζ reconstitution in vitro. Therefore, ζ works as a unidirectional pawl-ratchet inhibitor of the PdF1FO-ATPase nanomotor favoring the ATP synthase turnover to improve respiratory cell growth and bioenergetics.


Assuntos
Transporte de Íons/genética , Mitocôndrias/metabolismo , Paracoccus denitrificans/crescimento & desenvolvimento , Subunidades Proteicas/genética
11.
PLoS One ; 12(7): e0178673, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686591

RESUMO

In a previous phylogenetic study of the family of pyruvate kinase EC (2.7.1.40), a cluster with Glu117 and another with Lys117 were found (numbered according to the rabbit muscle enzyme). The sequences with Glu117 have been found to be K+-dependent, whereas those with Lys117 were K+-independent. Interestingly, only γ-proteobacteria exhibit sequences in both branches of the tree. In this context, it was explored whether these phylogenetically distinct pyruvate kinases were both expressed and contribute to the pyruvate kinase activity in Vibrio cholerae. The main findings of this work showed that the isozyme with Glu117 is an active K+-dependent enzyme. At the same substrate concentration, its Vmax in the absence of fructose 1,6 bisphosphate was 80% of that with its effector. This result is in accordance with the non-essential activation described by allosteric ligands for most pyruvate kinases. In contrast, the pyruvate kinase with Lys117 was a K+-independent enzyme displaying an allosteric activation by ribose 5-phosphate. At the same substrate concentration, its activity without the effector was 0.5% of the one obtained in the presence of ribose 5-phosphate, indicating that this sugar monophosphate is a strong activator of this enzyme. This absolute allosteric dependence is a novel feature of pyruvate kinase activity. Interestingly, in the K+-independent enzyme, Mn2+ may "mimic" the allosteric effect of Rib 5-P. Despite their different allosteric behavior, both isozymes display a rapid equilibrium random order kinetic mechanism. The intracellular concentrations of fructose 1,6-bisphosphate and ribose 5-phosphate in Vibrio cholerae have been experimentally verified to be sufficient to induce maximal activation of both enzymes. In addition, Western blot analysis indicated that both enzymes were co-expressed. Therefore, it is concluded that VcIPK and VcIIPK contribute to the activity of pyruvate kinase in this γ-proteobacterium.


Assuntos
Isoenzimas/metabolismo , Potássio/metabolismo , Piruvato Quinase/metabolismo , Vibrio cholerae/enzimologia , Regulação Alostérica , Sequência de Aminoácidos/genética , Animais , Sítios de Ligação , Frutosedifosfatos/metabolismo , Isoenzimas/genética , Cinética , Piruvato Quinase/genética , Coelhos , Ribosemonofosfatos/metabolismo , Especificidade por Substrato , Vibrio cholerae/genética
12.
J Biol Chem ; 291(2): 538-46, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26546676

RESUMO

The ζ subunit is a novel inhibitor of the F1FO-ATPase of Paracoccus denitrificans and related α-proteobacteria. It is different from the bacterial (ϵ) and mitochondrial (IF1) inhibitors. The N terminus of ζ blocks rotation of the γ subunit of the F1-ATPase of P. denitrificans (Zarco-Zavala, M., Morales-Ríos, E., Mendoza-Hernández, G., Ramírez-Silva, L., Pérez-Hernández, G., and García-Trejo, J. J. (2014) FASEB J. 24, 599-608) by a hitherto unknown quaternary structure that was first modeled here by structural homology and protein docking. The F1-ATPase and F1-ζ models of P. denitrificans were supported by cross-linking, limited proteolysis, mass spectrometry, and functional data. The final models show that ζ enters into F1-ATPase at the open catalytic αE/ßE interface, and two partial γ rotations lock the N terminus of ζ in an "inhibition-general core region," blocking further γ rotation, while the ζ globular domain anchors it to the closed αDP/ßDP interface. Heterologous inhibition of the F1-ATPase of P. denitrificans by the mitochondrial IF1 supported both the modeled ζ binding site at the αDP/ßDP/γ interface and the endosymbiotic α-proteobacterial origin of mitochondria. In summary, the ζ subunit blocks the intrinsic rotation of the nanomotor by inserting its N-terminal inhibitory domain at the same rotor/stator interface where the mitochondrial IF1 or the bacterial ϵ binds. The proposed pawl mechanism is coupled to the rotation of the central γ subunit working as a ratchet but with structural differences that make it a unique control mechanism of the nanomotor to favor the ATP synthase activity over the ATPase turnover in the α-proteobacteria.


Assuntos
Alphaproteobacteria/enzimologia , Paracoccus denitrificans/enzimologia , Subunidades Proteicas/antagonistas & inibidores , ATPases Translocadoras de Prótons/antagonistas & inibidores , Cristalografia por Raios X , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Moleculares , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Homologia Estrutural de Proteína , Tripsina/metabolismo , Proteína Inibidora de ATPase
13.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 10): 1309-17, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26457523

RESUMO

The structures of F-ATPases have predominantly been determined from mitochondrial enzymes, and those of the enzymes in eubacteria have been less studied. Paracoccus denitrificans is a member of the α-proteobacteria and is related to the extinct protomitochondrion that became engulfed by the ancestor of eukaryotic cells. The P. denitrificans F-ATPase is an example of a eubacterial F-ATPase that can carry out ATP synthesis only, whereas many others can catalyse both the synthesis and the hydrolysis of ATP. Inhibition of the ATP hydrolytic activity of the P. denitrificans F-ATPase involves the ζ inhibitor protein, an α-helical protein that binds to the catalytic F1 domain of the enzyme. This domain is a complex of three α-subunits and three ß-subunits, and one copy of each of the γ-, δ- and ℇ-subunits. Attempts to crystallize the F1-ζ inhibitor complex yielded crystals of a subcomplex of the catalytic domain containing the α- and ß-subunits only. Its structure was determined to 2.3 Šresolution and consists of a heterodimer of one α-subunit and one ß-subunit. It has no bound nucleotides, and it corresponds to the `open' or `empty' catalytic interface found in other F-ATPases. The main significance of this structure is that it aids in the determination of the structure of the intact membrane-bound F-ATPase, which has been crystallized.


Assuntos
Biocatálise , Paracoccus denitrificans/enzimologia , Multimerização Proteica , Subunidades Proteicas/química , ATPases Translocadoras de Prótons/química , Proteínas de Bactérias/química , Cristalização , Cristalografia por Raios X
15.
Biomed Res Int ; 2015: 718786, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25834824

RESUMO

BACKGROUND: The relevance of TBX20 gene in heart development has been demonstrated in many animal models, but there are few works that try to elucidate the effect of TBX20 mutations in human congenital heart diseases. In these studies, all missense mutations associated with atrial septal defect (ASD) were found in the DNA-binding T-box domain, none in the transcriptional activator domain. METHODS: We search for TBX20 mutations in a group of patients with ASD or ventricular septal defect (VSD) using the High Resolution Melting (HRM) method and DNA sequencing. RESULTS: We report three missense mutations (Y309D, T370O, and M395R) within the transcriptional activator domain of human TBX20 that were associated with ASD. CONCLUSIONS: This is the first association of TBX20 transcriptional activator domain missense mutations with ASD. These findings could have implications for diagnosis, genetic screening, and patient follow-up.


Assuntos
Comunicação Interatrial/genética , Mutação de Sentido Incorreto/genética , Proteínas com Domínio T/genética , Ativação Transcricional/genética , Idoso , Animais , Criança , Feminino , Comunicação Interatrial/patologia , Humanos , Masculino , Organogênese/genética , Estrutura Terciária de Proteína , Análise de Sequência de DNA
16.
PLoS One ; 10(3): e0119233, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25811853

RESUMO

Eukarya pyruvate kinases have glutamate at position 117 (numbered according to the rabbit muscle enzyme), whereas in Bacteria have either glutamate or lysine and in Archaea have other residues. Glutamate at this position makes pyruvate kinases K+-dependent, whereas lysine confers K+-independence because the positively charged residue substitutes for the monovalent cation charge. Interestingly, pyruvate kinases from two characterized Crenarchaeota exhibit K+-independent activity, despite having serine at the equivalent position. To better understand pyruvate kinase catalytic activity in the absence of K+ or an internal positive charge, the Thermofilum pendens pyruvate kinase (valine at the equivalent position) was characterized. The enzyme activity was K+-independent. The kinetic mechanism was random order with a rapid equilibrium, which is equal to the mechanism of the rabbit muscle enzyme in the presence of K+ or the mutant E117K in the absence of K+. Thus, the substrate binding order of the T. pendens enzyme was independent despite lacking an internal positive charge. Thermal stability studies of this enzyme showed two calorimetric transitions, one attributable to the A and C domains (Tm of 99.2°C), and the other (Tm of 105.2°C) associated with the B domain. In contrast, the rabbit muscle enzyme exhibits a single calorimetric transition (Tm of 65.2°C). The calorimetric and kinetic data indicate that the B domain of this hyperthermophilic enzyme is more stable than the rest of the protein with a conformation that induces the catalytic readiness of the enzyme. B domain interactions of pyruvate kinases that have been determined in Pyrobaculum aerophilum and modeled in T. pendens were compared with those of the rabbit muscle enzyme. The results show that intra- and interdomain interactions of the Crenarchaeota enzymes may account for their higher B domain stability. Thus the structural arrangement of the T. pendens pyruvate kinase could allow charge-independent catalysis.


Assuntos
Proteínas Arqueais/metabolismo , Crenarchaeota/enzimologia , Potássio/metabolismo , Piruvato Quinase/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Animais , Proteínas Arqueais/genética , Varredura Diferencial de Calorimetria , Catálise , Crenarchaeota/classificação , Cinética , Dados de Sequência Molecular , Músculo Esquelético/enzimologia , Filogenia , Estrutura Terciária de Proteína , Piruvato Quinase/genética , Coelhos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência
17.
FASEB J ; 28(5): 2146-57, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24522203

RESUMO

The ζ subunit is a novel natural inhibitor of the α-proteobacterial F1FO-ATPase described originally in Paracoccus denitrificans. To characterize the mechanism by which this subunit inhibits the F1FO nanomotor, the ζ subunit of Paracoccus denitrificans (Pd-ζ) was analyzed by the combination of kinetic, biochemical, bioinformatic, proteomic, and structural approaches. The ζ subunit causes full inhibition of the sulfite-activated PdF1-ATPase with an apparent IC50 of 270 nM by a mechanism independent of the ε subunit. The inhibitory region of the ζ subunit resides in the first 14 N-terminal residues of the protein, which protrude from the 4-α-helix bundle structure of the isolated ζ subunit, as resolved by NMR. Cross-linking experiments show that the ζ subunit interacts with rotor (γ) and stator (α, ß) subunits of the F1-ATPase, indicating that the ζ subunit hinders rotation of the central stalk. In addition, a putatively regulatory nucleotide-binding site was found in the ζ subunit by isothermal titration calorimetry. Together, the data show that the ζ subunit controls the rotation of F1FO-ATPase by a mechanism reminiscent of, but different from, those described for mitochondrial IF1 and bacterial ε subunits where the 4-α-helix bundle of ζ seems to work as an anchoring domain that orients the N-terminal inhibitory domain to hinder rotation of the central stalk.


Assuntos
ATPases Bacterianas Próton-Translocadoras/metabolismo , Paracoccus denitrificans/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Calorimetria , Reagentes de Ligações Cruzadas , Imidoésteres , Concentração Inibidora 50 , Cinética , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Rotação , Homologia de Sequência de Aminoácidos , Succinimidas
18.
J Biol Chem ; 286(27): 23911-9, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21572045

RESUMO

Mitochondrial complexes I, III(2), and IV from human cytotrophoblast and syncytiotrophoblast associate to form supercomplexes or respirasomes, with the following stoichiometries: I(1):(III(2))(1) and I(1):(III(2))(1-2):IV(1-4). The content of respirasomes was similar in both cell types after isolating mitochondria. However, syncytiotrophoblast mitochondria possess low levels of dimeric complex V and do not have orthodox cristae morphology. In contrast, cytotrophoblast mitochondria show normal cristae morphology and a higher content of ATP synthase dimer. Consistent with the dimerizing role of the ATPase inhibitory protein (IF(1)) (García, J. J., Morales-Ríos, E., Cortés-Hernandez, P., and Rodríguez-Zavala, J. S. (2006) Biochemistry 45, 12695-12703), higher relative amounts of IF(1) were observed in cytotrophoblast when compared with syncytiotrophoblast mitochondria. Therefore, there is a correlation between dimerization of complex V, IF(1) expression, and the morphology of mitochondrial cristae in human placental mitochondria. The possible relationship between cristae architecture and the physiological function of the syncytiotrophoblast mitochondria is discussed.


Assuntos
Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/metabolismo , Complexos Multienzimáticos/metabolismo , Trofoblastos/enzimologia , Trofoblastos/ultraestrutura , Humanos , Proteínas Mitocondriais/química , Complexos Multienzimáticos/química
19.
Mitochondrion ; 11(1): 147-54, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20854934

RESUMO

Allotopic expression is potentially a gene therapy for mtDNA-related diseases. Some OXPHOS proteins like ATP6 (subunit a of complex V) and COX3 (subunit III of complex IV) that are typically mtDNA-encoded, are naturally nucleus-encoded in the alga Chlamydomonas reinhardtii. The mitochondrial proteins whose genes have been relocated to the nucleus exhibit long mitochondrial targeting sequences ranging from 100 to 140 residues and a diminished overall mean hydrophobicity when compared with their mtDNA-encoded counterparts. We explored the allotopic expression of the human gene products COX3 and ATP6 that were re-designed for mitochondrial import by emulating the structural properties of the corresponding algal proteins. In vivo and in vitro data in homoplasmic human mutant cells carrying either a T8993G mutation in the mitochondrial atp6 gene or a 15bp deletion in the mtDNA-encoded cox3 gene suggest that these human mitochondrial proteins re-designed for nuclear expression are targeted to the mitochondria, but fail to functionally integrate into their corresponding OXPHOS complexes.


Assuntos
Núcleo Celular/enzimologia , Chlamydomonas reinhardtii/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Genes Mitocondriais , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Células CHO , Núcleo Celular/genética , Chlamydomonas reinhardtii/genética , Cricetinae , Cricetulus , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Terapia Genética/métodos , Humanos , Microscopia de Fluorescência , Mitocôndrias/genética , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação , Proteínas Recombinantes de Fusão/genética
20.
J Biol Chem ; 285(47): 36447-55, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20833715

RESUMO

The structure of the dimeric ATP synthase from yeast mitochondria was analyzed by transmission electron microscopy and single particle image analysis. In addition to the previously reported side views of the dimer, top view and intermediate projections served to resolve the arrangement of the rotary c(10) ring and the other stator subunits at the F(0)-F(0) dimeric interface. A three-dimensional reconstruction of the complex was calculated from a data set of 9960 molecular images at a resolution of 27 Å. The structural model of the dimeric ATP synthase shows the two monomers arranged at an angle of ∼45°, consistent with our earlier analysis of the ATP synthase from bovine heart mitochondria (Minauro-Sanmiguel, F., Wilkens, S., and Garcia, J. J. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 12356-12358). In the ATP synthase dimer, the two peripheral stalks are located near the F(1)-F(1) interface but are turned away from each other so that they are not in contact. Based on the three-dimensional reconstruction, a model of how dimeric ATP synthase assembles to form the higher order oligomeric structures that are required for mitochondrial cristae biogenesis is discussed.


Assuntos
Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Saccharomyces cerevisiae/enzimologia , Cristalografia por Raios X , Dimerização , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...