Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 47(6): 1412-1425, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30512071

RESUMO

Agriculture in the United States must respond to escalating demands for productivity and efficiency, as well as pressures to improve its stewardship of natural resources. Growing global population and changing diets, combined with a greater societal awareness of agriculture's role in delivering ecosystem services beyond food, feed, fiber, and energy production, require a comprehensive perspective on where and how US agriculture can be sustainably intensified, that is, made more productive without exacerbating local and off-site environmental concerns. The USDA's Long-Term Agroecosystem Research (LTAR) network is composed of 18 locations distributed across the contiguous United States working together to integrate national and local agricultural priorities and advance the sustainable intensification of US agriculture. We explore here the concept of sustainable intensification as a framework for defining strategies to enhance production, environmental, and rural prosperity outcomes from agricultural systems. We also elucidate the diversity of factors that have shaped the past and present conditions of cropland, rangeland, and pastureland agroecosystems represented by the LTAR network and identify priorities for research in the areas of production, resource conservation and environmental quality, and rural prosperity. Ultimately, integrated long-term research on sustainable intensification at the national scale is critical to developing practices and programs that can anticipate and address challenges before they become crises.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais/métodos , Ecossistema , Abastecimento de Alimentos , Pesquisa , Estados Unidos
2.
Oecologia ; 150(3): 453-63, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16955288

RESUMO

Ongoing, widespread increases in woody plant abundance in historical grasslands and savannas (woody encroachment) likely will interact with future precipitation variability to influence seasonal patterns of carbon cycling in water-limited regions. To characterize the effects of woody encroachment on the sensitivity of ecosystem carbon exchange to seasonal rainfall in a semi-arid riparian setting we used flux-duration analysis to compare 2003-growing season NEE data from a riparian grassland and shrubland. Though less seasonally variable than the grassland, shrubland NEE was more responsive to monsoon rains than anticipated. During the 2004-growing season we measured leaf gas exchange and collected leaf tissue for delta(13)C and nitrogen content analysis periodically among three size classes of the dominant woody-plant, Prosopis velutina and the dominant understory species, Sporobolus wrightii, a C(4) bunchgrass, present at the shrubland. We observed size-class and plant functional type independent patterns of seasonal plant performance consistent with greater-than-anticipated sensitivity of NEE in the shrubland. This research highlights the complex interaction between growing-season precipitation, plant-available alluvial groundwater and woody plant abundance governing ecosystem carbon balance in this semi-arid watershed.


Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Prosopis/crescimento & desenvolvimento , Chuva , Análise de Variância , Arizona , Isótopos de Carbono/análise , Nitrogênio/análise , Folhas de Planta/metabolismo , Poaceae/química , Poaceae/crescimento & desenvolvimento , Prosopis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA