Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Eng ; 3(1): 106, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090208

RESUMO

For steel bridges, corrosion has historically led to bridge failures, resulting in fatalities and injuries. To enhance public safety and prevent such incidents, authorities mandate in-situ evaluation and reporting of corroded members. The current inspection and evaluation protocol is characterized by intense labor, traffic delays, and poor capacity predictions. Here we combine full-scale experimental testing of a decommissioned girder, 3D laser scanning, and convolutional neural networks (CNNs) to introduce a continuous inspection and evaluation framework. Classification and regression CNNs are trained on a databank of 1,421 naturally inspired corrosion scenarios, generated computationally based on point clouds of three corroded girders collected in lab conditions. Results indicate low errors of up to 2.0% and 3.3%, respectively. The methodology is validated on eight real corroded ends and implemented for the evaluation of an in-service bridge. This framework promises significant advancements in assessing aging bridge infrastructure with higher accuracy and efficiency compared to analytical or semi-analytical approaches.

2.
Sensors (Basel) ; 24(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39065877

RESUMO

With the advancing energy transition, icing is a growing problem in the wind turbine sector. The development of systems to detect and mitigate icing makes it necessary to understand its basic behavior and characteristics. This paper proposes a method for the continuous and full-field measurement of the icing process of rotating blades, using a single line laser profile scanner. Inside of a climate chamber, a rotor is driven by a motor, while a system of nozzles provides a fine water dust, which leads to ice accumulating on simple NACA blades, which in turn is measured by a triangulation laser. The measurement data are cleared from outliers and presented as a surface in 3D space. An alpha shape is used to reconstruct and extract the volume of the ice between a reference and a measurement surface, using the corresponding Matlab function. Appropriate input parameters for the function and offsetting of the reference surface to improve the results are compared and discussed. The resulting system is able to detect small changes in the ice layer thickness in the sub-millimeter range.

3.
Materials (Basel) ; 16(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38068182

RESUMO

The titanium matrix composite was produced through a hot compaction process at 1250 °C using the mixture of elemental powders with chemical composition of Ti-5Al-5Mo-5V-3Cr and 2 wt.% addition of boron carbide. The phase analysis via X-ray diffraction method was performed to confirm the occurrence of an in situ reaction between boron carbide and titanium. Then, the wide-ranging microstructural analysis was performed using optical microscopy as well as scanning electron microscopy along with energy-dispersive X-ray spectroscopy and electron backscatter diffraction. Based on this investigation, it was possible to describe the diffusion behavior during hot compaction and possible precipitation capabilities of TiC and TiB phases. Tensile and compression tests were conducted to determine the strength properties. The investigated composite has an ultimate tensile strength of about 910 ± 13 MPa with elongation of 10.9 ± 1.9% and compressive strength of 1744 ± 20 MPa with deformation of 10.5 ± 0.2%. Observation of the fracture surface allowed us to determine the dominant failure mechanism, which was crack propagation from the reaction layer surrounding remaining boron carbide particle, through the titanium alloy matrix. The study summarizes the process of producing an in situ titanium matrix composite from elemental powders and B4C additives and emphasizes the importance of element diffusion and reaction layer formation, which contributes to the strength properties of the material.

4.
Materials (Basel) ; 16(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37374679

RESUMO

The authors would like to make the following corrections about the published paper [...].

5.
Materials (Basel) ; 16(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36984364

RESUMO

Freeze Foams are cellular, ceramic structures with hierarchical pore structures that are manufactured using the direct foaming process. By tailoring their morphology and strength, these foam structures are able to cover a wide range of application. Earlier works identified that pore-forming influencing factors (water and air content, suspension temperature, as well as pressure reduction rate) dictate the constitution on a macroscopic and microscopic scale. Therefore, the ability to manufacture foams whose properties align with the component requirements would be an important step in advancing towards a widespread application of these promising materials. With this goal in mind, the correlation between the pore-forming influencing factors and the resulting mechanical properties was quantified. Foams with independently adjustable porosities were produced at the micro and macro scales and evaluated according to their material failure behavior under compressive loads. As a result, foams with determined macroporosities between 38 and 62%, microporosities between 25 and 42%, and compression strengths between 1 and 7 MPa with different material failure characteristics were manufactured and systematically investigated.

6.
Materials (Basel) ; 17(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38204060

RESUMO

During the production of fiber-reinforced plastics using resin transfer molding (RTM), various characteristic defects and flaws can occur, such as fiber displacement and fiber waviness. Particularly in high-pressure RTM (HP-RTM), fiber misalignments are generated during infiltration by local peaks in the flow rate, leading to a significant reduction in the mechanical properties. To minimize or avoid this effect, the manufacturing process must be well controlled. Simulative approaches allow for a basic design of the mold filling process; however, due to the high number of influencing variables, the real behavior cannot be exactly reproduced. The focus of this work is on flow front monitoring in an HP-RTM mold using phased array ultrasonic testing. By using an established non-destructive testing instrument, the effort required for integration into the manufacturing process can be significantly reduced. For this purpose, investigations were carried out during the production of test specimens composed of glass fiber-reinforced polyurethane resin. Specifically, a phased array ultrasonic probe was used to record individual line scans over the form filling time. Taking into account the specifications of the probe used in these experiments, an area of 48.45 mm was inspected with a spatial resolution of 0.85 mm derived from the pitch. Due to the aperture that had to be applied to improve the signal-to-noise ratio, an averaging of the measured values similar to a moving average over a window of 6.8 mm had to be considered. By varying the orientation of the phased array probe and therefore the orientation of the line scans, it is possible to determine the local flow velocities of the matrix system during mold filling. Furthermore, process simulation studies with locally varying fiber volume contents were carried out. Despite the locally limited measuring range of the monitoring method presented, conclusions about the global flow behavior in a large mold can be drawn by comparing the experimentally determined results with the process simulation studies. The agreement between the measurement and simulation was thus improved by around 70%.

7.
Polymers (Basel) ; 14(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36433167

RESUMO

The paper presents research regarding a thermally supported multi-material clinching process (hotclinching) for metal and thermoplastic composite (TPC) sheets: an experimental approach to investigate the flow pressing phenomena during joining. Therefore, an experimental setup is developed to compress the TPC-specimens in out-of-plane direction with different initial TPC thicknesses and varying temperature levels. The deformed specimens are analyzed with computed tomography to investigate the resultant inner material structure at different compaction levels. The results are compared in terms of force-compaction-curves and occurring phenomena during compaction. The change of the material structure is characterized by sliding phenomena and crack initiation and growth.

8.
Materials (Basel) ; 15(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36295308

RESUMO

A virtual test setup for investigating single fibres in a transverse shear flow based on a parallel-plate rheometer is presented. The investigations are carried out to verify a numerical representation of the fluid-structure interaction (FSI), where Arbitrary Lagrangian-Eulerian (ALE) and computational fluid dynamics (CFD) methods are used and evaluated. Both are suitable to simulate flexible solid structures in a transverse shear flow. Comparative investigations with different model setups and increasing complexity are presented. It is shown, that the CFD method with an interface-based coupling approach is not capable of handling small fibre diameters in comparison to large fluid domains due to mesh dependencies at the interface definitions. The ALE method is more suited for this task since fibres are embedded without any mesh restrictions. Element types beam, solid, and discrete are considered for fibre modelling. It is shown that the beam formulation for ALE and 3D solid elements for the CFD method are the preferred options.

9.
Polymers (Basel) ; 14(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080722

RESUMO

Fast-curing epoxy resins enable substantial reduction of cycle times during production of thermoset polymer matrix composites. Due to the snap-cure behaviour, both characterisation and processing of these resins are associated with high complexity which motivates the development of a high-fidelity framework for the prediction of the process-dependent behaviour ranging from experiment to model validation. In order to determine influence of time, temperature, and degree of cure, a multitude of rheometer and dynamic mechanical analysis experiments are conducted and evaluated. Building on the experimental results, a material model based on a generalised Maxwell model is developed. It is calibrated on the results obtained in the tests and shown to describe the material's behaviour with high accuracy under all investigated conditions. The model's predictive capabilities are further tested by applying it to a dynamic mechanical analysis, exposing the model to previously unknown loading and temperature conditions. It is demonstrated that the model is capable of predicting such changing boundary conditions with high accuracy.

10.
Int J Mol Sci ; 23(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36077123

RESUMO

The aim of the article is to compare two types of fly ash (from the fluidized and pulverized coal combustion process) as a filler for rigid polyurethane foam. Pulverized fly ash (PFA) is widely used in building materials, while fluidized fly ash (FFA) is not currently recycled, but landfilled. The produced rigid polyurethane foams were reinforced with 5 and 10% by weight addition of fly ash from two different types of boilers. The foaming process, physical properties, morphologies and thermal degradation were subject to comparative analysis. The research indicated that fly ash intensifies the reactions of foam synthesis, most commonly, polyurethane (PU) foam with an addition of 10% PFA. What is interesting is that both ashes can be used in PU foam technology as they do not cause deterioration of the physical parameters. As shown, the addition of filler affects the morphology and impairs the brittleness. Additionally, the use of fly ash from coal combustion in the technology of polyurethane materials complies with the guidelines of the circular economy stated in the European Union legislation. Partial replacement of petrochemical components with waste filler also reduces the total energy consumption in the production of PU composites.


Assuntos
Cinza de Carvão , Poliuretanos , Carvão Mineral/análise , Cinza de Carvão/química , Materiais de Construção
11.
Materials (Basel) ; 15(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955388

RESUMO

Thermoplastic composites (TPCs) are predestined for use in lightweight structures, especially for high-volume applications. In many cases, joining is a key factor for the successful application of TPCs in multi-material systems. Many joining processes for this material group are based on warm forming the joining zone. This results in a change of the local material structure characterised by modified fibre paths, as well as varying fibre contents, which significantly influences the load-bearing behaviour. During the forming process, many different phenomena occur simultaneously at different scales. In this paper, the deformation modes and flow mechanisms of TPCs during forming described in the literature are first analysed. Based on this, three different joining processes are investigated: embedding of inserts, moulding of contour joints, and hotclinching. In order to identify the phenomena occurring in each process and to describe the characteristic resulting material structure in the joining zones, micrographs as well as computed tomography (CT) analyses are performed for both individual process stages and final joining zones.

12.
Polymers (Basel) ; 14(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35683836

RESUMO

The inter-fiber failure of glass fiber-reinforced epoxy specimens with four different fiber angles was analyzed. Flat specimens were subjected to static and fatigue loading considering different load levels and load ratios. Damage investigation in terms of crack density measurement was performed by transmitted white light imaging using a digital camera and LED illumination from the back of the specimen on a servo-hydraulic testing machine. Static and fatigue results were examined with respect to crack initiation and crack growth, considering the special case of bonding yarns parallel to the fiber directions. The bonding yarns act as stress concentrations, influencing the early cracking behavior, and complicate the detectability of cracks growing underneath or next to the bonding yarns. In cyclic loading, the influence of load level, load ratio, mean stress, fiber orientation, and ply thickness was the focus of the experimental campaign. Cyclic cracking behavior in terms of initiation and growth was analyzed based on the applied loading conditions and laminate configurations. It was found that halving the ply thickness nearly doubled the amount of microcracks in case of high loads. For low loads, no such effect was observed up to 5×105 loading cycles. Experimental findings on individual crack growth confirmed that crack interaction started for crack spacings less than four times the ply thickness and that subsequent crack growth shifted into regions of larger local crack spacing.

13.
Polymers (Basel) ; 14(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35160521

RESUMO

Fiber-reinforced polymers are increasingly being used, especially in lightweight structures. Here, the effective adaptation of mechanical or physical properties to the necessary application or manufacturing requirements plays an important role. In this context, the alignment of reinforcing fibers is often hindered by manufacturing aspects. To achieve graded or locally adjusted alignment of different fiber lengths, common manufacturing technologies such as injection molding or compression molding need to be supported by the external non-mechanical process. Magnetic or electrostatic fields seem to be particularly suitable for this purpose. The present work shows a first simulation study of the alignment of magnetic particles in polymer matrices as a function of different parameters. The parameters studied are the viscosity of the surrounding polymer as a function of the focused processing methods, the fiber length, the thickness and permeability of the magnetic fiber coatings, and the magnetic flux density. The novelty of the presented works is in the development of an advanced simulation model that allows the simulative representation and reveal of the fluid-structure interaction, the influences of these parameters on the inducible magnetic torque and fiber alignment of a single fiber. Accordingly, the greatest influence on fiber alignment is caused by the magnetic flux density and the coating material.

14.
Materials (Basel) ; 15(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35160783

RESUMO

Freeze foaming is a method to manufacture cellular ceramic scaffolds with a hierarchical porous structure. These so-called freeze foams are predestined for the use as bone replacement material because of their internal bone-like structure and biocompatibility. On the one hand, they consist of macrostructural foam cells which are formed by the expansion of gas inside the starting suspension. On the other hand, a porous microstructure inside the foam struts is formed during freezing and subsequent freeze drying of the foamed suspension. The aim of this work is to investigate for the first time the formation of macrostructure and microstructure separately depending on the composition of the suspension and the pressure reduction rate, by means of appropriate characterization methods for the different pore size ranges. Moreover, the foaming behavior itself was characterized by in-situ radiographical and computed tomography (CT) evaluation. As a result, it could be shown that it is possible to tune the macro- and microstructure separately with porosities of 49-74% related to the foam cells and 10-37% inside the struts.

15.
Polymers (Basel) ; 13(22)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34833225

RESUMO

Fiber reinforced composites combine low density with high specific mechanical properties and thus became indispensable for today's lightweight applications. In particular, carbon fibre reinforced plastic (CFRP) is broadly used for aerospace components. However, damage and failure behaviour, especially for complex fibre reinforcement set-ups and under impact loading conditions, are still not fully understood yet. Therefore, relatively large margins of safety are currently used for designing high-performance materials and structures. Technologies to functionalise the materials enabling the monitoring of the structures and thus avoiding critical conditions are considered to be key to overcoming these drawbacks. For this, sensors and actuators are bonded to the surface of the composite structures or are integrated into the composite lay-up. In case of integration, the impact on the mechanical properties of the composite materials needs to be understood in detail. Additional elements may disturb the composite structure, impeding the direct connection of the composite layers and implying the risk of reducing the interlaminar integrity by means of a lower delamination resistance. In the presented study, the possibility of adjusting the interface between the integrated actuator and sensor layers to the composite layers is investigated. Different polymer layer combinations integrated into carbon fibre reinforced composite layups are compared with respect to their interlaminar critical energy release rates GIc and GIIc. A standard aerospace unidirectionally reinforced (UD) CFRP prepreg material was used as reference material configuration. The investigations show that it is possible to enhance the mechanical properties, especially the interlaminar energy release rate by using multilayered sensor-actuator layers with Polyimide (PI) outer layers and layers with low shear stiffness in between.

16.
Materials (Basel) ; 14(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443051

RESUMO

In this work, silicone/carbon nanotube (CNT) composites were produced using a spread coating process, followed by morphological investigations and determination of their electrical properties and heating behaviour through the application of electric potential. Composites containing varying amounts of CNT (1-7%) were investigated for their thermal behaviour with the use of an IR camera. Subsequently, thermal behaviour and electrical properties were measured when the samples were stretched (up to 20%). With the 7% CNT composites, which had a conductivity of 106 S/m, it was possible to achieve a temperature of 155 °C at a relatively low voltage of 23 V. For high CNT contents, when the potential was controlled in such a way as to maintain the temperature well below 100 °C, the temperature remained almost constant at all levels of strain investigated. At higher potentials yielding temperatures around 100 °C and above, stretching had a drastic effect on temperature. These results are critical for designing composites for dynamic applications requiring a material whose properties remain stable under strain.

17.
Sensors (Basel) ; 21(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34300446

RESUMO

Due to their lightweight properties, fiber-reinforced composites are well suited for large and fast rotating structures, such as fan blades in turbomachines. To investigate rotor safety and performance, in situ measurements of the structural dynamic behaviour must be performed during rotating conditions. An approach to measuring spatially resolved vibration responses of a rotating structure with a non-contact, non-rotating sensor is investigated here. The resulting spectra can be assigned to specific locations on the structure and have similar properties to the spectra measured with co-rotating sensors, such as strain gauges. The sampling frequency is increased by performing consecutive measurements with a constant excitation function and varying time delays. The method allows for a paradigm shift to unambiguous identification of natural frequencies and mode shapes with arbitrary rotor shapes and excitation functions without the need for co-rotating sensors. Deflection measurements on a glass fiber-reinforced polymer disk were performed with a diffraction grating-based sensor system at 40 measurement points with an uncertainty below 15 µrad and a commercial triangulation sensor at 200 measurement points at surface speeds up to 300 m/s. A rotation-induced increase of two natural frequencies was measured, and their mode shapes were derived at the corresponding rotational speeds. A strain gauge was used for validation.

18.
Materials (Basel) ; 14(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34300806

RESUMO

Generative hybridization enables the efficient production of lightweight structures by combining classic manufacturing processes with additive manufacturing technologies. This type of functionalization process allows components with high geometric complexity and high mechanical properties to be produced efficiently in small series without the need for additional molds. In this study, hybrid specimens were generated by additively depositing PA6 (polyamide 6) via fused layer modeling (FLM) onto continuous woven fiber GF/PA6 (glass fiber/polyamide 6) flat preforms. Specifically, the effects of surface pre-treatment and process-induced surface interactions were investigated using optical microscopy for contact angle measurements as well as laser profilometry and thermal analytics. The bonding characteristic at the interface was evaluated via quasi-static tensile pull-off tests. Results indicate that both the bond strength and corresponding failure type vary with pre-treatment settings and process parameters during generative hybridization. It is shown that both the base substrate temperature and the FLM nozzle distance have a significant influence on the adhesive tensile strength. In particular, it can be seen that surface activation by plasma can significantly improve the specific adhesion in generative hybridization.

19.
Materials (Basel) ; 14(9)2021 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-34065095

RESUMO

Continuous carbon fibre-reinforced thermoplastic composites have convincing anisotropic properties, which can be used to strengthen structural components in a local, variable and efficient way. In this study, an additive manufacturing (AM) process is introduced to fabricate in situ consolidated continuous fibre-reinforced polycarbonate. Specimens with three different nozzle temperatures were in situ consolidated and tested in a three-point bending test. Computed tomography (CT) is used for a detailed analysis of the local material structure and resulting material porosity, thus the results can be put into context with process parameters. In addition, a highly curved test structure was fabricated that demonstrates the limits of the process and dependent fibre strand folding behaviours. These experimental investigations present the potential and the challenges of additive manufacturing-based in situ consolidated continuous fibre-reinforced polycarbonate.

20.
Sensors (Basel) ; 21(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809071

RESUMO

Damage identification of composite structures is a major ongoing challenge for a secure operational life-cycle due to the complex, gradual damage behaviour of composite materials. Especially for composite rotors in aero-engines and wind-turbines, a cost-intensive maintenance service has to be performed in order to avoid critical failure. A major advantage of composite structures is that they are able to safely operate after damage initiation and under ongoing damage propagation. Therefore, a robust, efficient diagnostic damage identification method would allow monitoring the damage process with intervention occurring only when necessary. This study investigates the structural vibration response of composite rotors by applying machine learning methods and the ability to identify, localise and quantify the present damage. To this end, multiple fully connected neural networks and convolutional neural networks were trained on vibration response spectra from damaged composite rotors with barely visible damage, mostly matrix cracks and local delaminations using dimensionality reduction and data augmentation. A databank containing 720 simulated test cases with different damage states is used as a basis for the generation of multiple data sets. The trained models are tested using k-fold cross validation and they are evaluated based on the sensitivity, specificity and accuracy. Convolutional neural networks perform slightly better providing a performance accuracy of up to 99.3% for the damage localisation and quantification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA