Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(33): 22370-22379, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37580987

RESUMO

We have investigated the electronic and finite temperature magnetic properties of germanium carbide (GeC) and ferromagnetic chromium nitride (CrN) heterobilayers by using first-principles calculations based on density functional theory with Hubbard U correction and an effective anisotropic Heisenberg spin model. The dynamical stability of different stacking formations of heterobilayers is ensured by considering the phonon spectra. All the stacking patterns show half-metallicity with an out-of-plane easy-axis ferromagnetic ground state. We find a high Curie temperature for GeC/CrN heterobilayers within the random phase approximation (RPA). In addition to the symmetric stackings, i.e., AA and AB, the electronic properties of non-symmetric stackings at three different twist angles are also analyzed. The electronic structure analysis of twisted structures demonstrates that the half-metallicity of the GeC/CrN heterobilayer is stack independent. Furthermore, we have investigated the electronic properties, magnetic anisotropy energy, Curie temperature, and spin wave spectrum in the presence of biaxial strain. It is shown that the compressive strain dramatically reduces the magnetic anisotropy energy of the GeC/CrN heterobilayer and Curie temperature, but the Curie temperature still remains well above room temperature for all strain values. The increasing values of tensile strain reduce the magnetic exchange while it increases the magnetic anisotropy energy of the heterobilayer system which enhances the Curie temperature of the structures. The monolayer CrN on the GeC with a wide band gap and commensurate lattice together with a high Tc value can be a feasible candidate for future spintronic applications.

2.
Phys Chem Chem Phys ; 24(17): 10210-10221, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35420606

RESUMO

Two-dimensional materials are leading the way in nanodevice applications thanks to their various advantages. Although two-dimensional materials show promise for many applications, they have certain limitations. In the last decade, the increasing demand for the applications of novel two-dimensional materials has accelerated heterostructure studies in this field. Hence, restoring the combination of two-dimensional heterostructured materials has been reported. In this paper, we show that the effect of the external electric field and biaxial strain on the silicene/Ga2SeS heterostructure has a critical impact on the tuning of the Schottky barrier height. The findings such as the variation of the electronic band gap, interlayer charge transfer, total dipole moment, and n-type/p-type Schottky barrier transitions of the silicene/Ga2SeS heterostructure under external effects imply that the device performance can be adjusted with Janus 2D materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA