Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 27(20): 5109-5123, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34165851

RESUMO

Inland waters play an active role in the global carbon cycle and emit large volumes of the greenhouse gases (GHGs), methane (CH4 ) and carbon dioxide (CO2 ). A considerable body of research has improved emissions estimates from lakes, reservoirs and rivers but recent attention has been drawn to the importance of small, artificial waterbodies as poorly quantified but potentially important emission hotspots. Of particular interest are emissions from drainage ditches and constructed ponds. These waterbody types are prevalent in many landscapes and their cumulative surface areas can be substantial. Furthermore, GHG emissions from constructed waterbodies are anthropogenic in origin and form part of national emissions reporting, whereas emissions from natural waterbodies do not (according to Intergovernmental Panel on Climate Change guidelines). Here, we present GHG data from two complementary studies covering a range of land uses. In the first, we measured emissions from nine ponds and seven ditches over a full year. Annual emissions varied considerably: 0.1-44.3 g CH4  m-2  year-1 and -36-4421 g CO2  m-2  year-1 . In the second, we measured GHG concentrations in 96 ponds and 64 ditches across seven countries, covering subtropical, temperate and sub-arctic biomes. When CH4 emissions were converted to CO2  equivalents, 93% of waterbodies were GHG sources. In both studies, GHGs were positively related to nutrient status (C, N, P), and pond GHG concentrations were highest in smallest waterbodies. Ditch and pond emissions were larger per unit area when compared to equivalent natural systems (streams, natural ponds). We show that GHG emissions from natural systems should not be used as proxies for those from artificial waterbodies, and that artificial waterbodies have the potential to make a substantial but largely unquantified contribution to emissions from the Agriculture, Forestry and Other Land Use sector, and the global carbon cycle.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Dióxido de Carbono/análise , Efeito Estufa , Gases de Efeito Estufa/análise , Lagos , Metano/análise , Óxido Nitroso/análise , Rios
2.
Environ Pollut ; 158(12): 3552-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20864232

RESUMO

Short-term increases in soil solution nitrate (NO(3)(-)) concentration are often observed after forest harvest, even in N-limited systems. We model NO(3)(-) leaching below the rooting zone as a function of site productivity. Using national forest inventories and published estimates of N attenuation in rivers and the riparian zone, we estimate effects of stem-only harvesting on NO(3)(-) leaching to groundwater, surface waters and the marine environment. Stem-only harvesting is a minor contributor to NO(3)(-) pollution of Swedish waters. Effects in surface waters are rapidly diluted downstream, but can be locally important for shallow well-waters as well as for the total amount of N reaching the sea. Harvesting adds approximately 8 Gg NO(3)-N to soil waters in Sweden, with local concentrations up to 7 mg NO(3)-N l(-1). Of that, ∼3.3 Gg reaches the marine environment. This is ∼3% of the overall Swedish N load to the Baltic.


Assuntos
Agricultura Florestal/métodos , Nitratos/análise , Caules de Planta/metabolismo , Árvores/fisiologia , Monitoramento Ambiental , Poluentes do Solo/análise , Suécia , Poluentes Químicos da Água/análise
3.
J Environ Qual ; 30(1): 189-93, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11215652

RESUMO

High transition metal concentrations were previously unexpectedly observed in soil water extracted by suction lysimeters following forest N fertilization. This observation called for additional measurements to investigate if the finding is a general phenomenon and, if so, whether stream water concentrations of transition metals could increase as a result of N fertilization. The measured levels of Cd in the preliminary findings were well above health limits for drinking water. Hence, the problem could be of major concern. Here we report on soil water and stream water concentrations at two partly fertilized watersheds. All sites were situated in the central part of Sweden. The N application (150 kg N ha(-1) in the form of calcium ammonium nitrate) resulted in increased concentrations of nitrate, and a pulse of acidity through the soil profile, which increased the solubility of transition metals (mainly Cd and Zn) and Al. Stream water concentrations of transition metals, on the other hand, were not affected during the studied period by the increased solubility of transition metals in the soil. The data imply that the solubilized transition metals probably insolubilize further down the soil profile, and that there is no risk from forest N fertilization (at normal soil pH levels) of transition metal levels increasing in nearby surface waters. To our knowledge, this is the first time this side effect of N fertilization has been considered.


Assuntos
Cádmio/análise , Monitoramento Ambiental , Nitrogênio/química , Poluentes Químicos da Água/análise , Abastecimento de Água , Cádmio/química , Fertilizantes , Concentração de Íons de Hidrogênio , Poluentes do Solo
4.
Sci Total Environ ; 280(1-3): 133-41, 2001 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-11763261

RESUMO

In the future, it may become common practice in Swedish forestry to recycle wood-ash, a waste product of the combustion of bio-fuel. As a consequence of the Chernobyl radioactive fallout in 1986, large areas of central Sweden were contaminated. Application of recycled wood-ash, originating from contaminated areas, to a previously uncontaminated forest, risks an increase in the concentration of radioactive 137Cs. We measured 137Cs radioactivity in different parts of coniferous forests in seven field experiments. Measurements of radioactivity were made 5-8 years after an application of wood-ash equivalent to 3000 kg ha(-1). The sites, in a north-south transect across Sweden, have a background radioactivity ranging from 0 to 40 kBq m(-2), the higher levels are mainly a result of the Chernobyl fall-out. Depending on its origin, the radioactivity of the applied wood-ash ranged from 0.0 to 4.8 kBq kg(-1), corresponding to 0.0-1.44 kBq m(-2). In autumn 1999, samples were taken from the soil, field vegetation, needles and twigs and the levels of 137Cs determined. In addition, soil samples were analysed for extractable K. The highest 137Cs concentration was found in the soil. At six of the seven sites there were no statistically significant effects of wood-ash application on 137Cs activity. This was despite the fact that the wood-ash had, in one case, added the same amount of radioactivity as the background. However, at one site with intermediate 137Cs deposition (10-20 kBq m(-2)), there was a statistically significant decrease in 137Cs radioactivity in the soil, needles and twigs from the plots treated with wood-ash. The decrease in radioactivity was partly due to the fact that one of the main constituents of wood-ash is K, which is antagonistic to 137Cs. Based on our results, it appears that application of wood-ash containing 137Cs does not necessarily increase the 137Cs radioactivity in plants and soil. However, some of the observed effects could be a result of the low number of replicates used in this study.


Assuntos
Radioisótopos de Césio/análise , Centrais Elétricas , Liberação Nociva de Radioativos , Eliminação de Resíduos , Poluentes Radioativos do Solo/análise , Árvores , Radioisótopos de Césio/química , Conservação dos Recursos Naturais , Incineração , Pinaceae , Folhas de Planta/química , Plantas , Poluentes Radioativos do Solo/farmacocinética , Ucrânia , Madeira
5.
ScientificWorldJournal ; 1 Suppl 2: 457-66, 2001 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-12805878

RESUMO

Biofuels, such as brash from forest fellings, have been proposed as an alternative energy source. Brash removal may affect the sustainability of forest production, e.g., through a change in the availability of cations and N in the soil. We report initial effects of brash removal on inorganic N content in humus and mineral soil, soil-solution chemistry, and field-layer biomass after clear felling an N-fertilisation experiment in central Sweden. The experiment comprised six different fertiliser levels, ranging from 0 to 600 kg N ha(-1). Urea was given every 5th year during 1967 to 1982 to replicated plots, giving total doses of 0 to 2400 kg N ha(-1). Clear felling took place in 1995, 13 years after the last fertilisation. The removal of brash decreased the NO3- content in the humus layer after clear felling. A decrease in the NO3- concentration of the soil solution was indicated during most of the study period as well. No effect of the previous N fertilisation was found in the humus layer, but in the mineral soil there was an increase in NO3- content for the highest N dose after clear felling ( p = 0.06). The soil-solution chemistry and the field-layer biomass showed an irregular pattern with no consistent effects of brash removal or previous fertilisation.


Assuntos
Biomassa , Nitrogênio/metabolismo , Solo/análise , Agricultura/tendências , Agroquímicos/química , Agroquímicos/metabolismo , Cátions/química , Cátions/metabolismo , Fontes Geradoras de Energia , Fertilizantes/análise , Minerais/química , Minerais/metabolismo , Nitrogênio/química , Compostos de Nitrogênio/química , Projetos de Pesquisa , Soluções/química , Suécia , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
6.
Oecologia ; 87(4): 488-494, 1991 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28313689

RESUMO

Current and maximally induced nitrate reductase activity (NRA), total-N, nitrate, K, P, Ca, Mg, Mo and sucrose in leaves ofDeschampsia flexuosa was measured three times during the vegetation period in forests along a deposition gradient (150 km) in south Sweden, in north Sweden where the nitrogen deposition is considerably lower, and at heavily N-fertilized plots. In addition, the interaction between nitrogen nutrition and light was studied along transects from clearings into forest in both south and north Sweden. Plants from sites with high nitrogen deposition had elevated current NRA compared to plants from less polluted sites, indicating high levels of available soil nitrate at the former. Current NRA and total N concentration in grass from sites with high deposition resembled those found at heavily N-fertilized plots. Under such circumstances, the ratio current NRA: maximally induced NRA as well as the concentration of nitrate was high, while the concentration of sucrose was low. This suggests that the grass at these sites was already utilizing a large portion of its capacity to assimilate nitrate. Light was found to play an important role in the assimilation of nitrate; leaf concentration of sucrose was found to be negatively correlated with both nitrate and total N. Consequently, grass growing under dense canopies in south Sweden is not able to dilute N by increasing growth. The diminished capacity of the grass to assimilate nitrate will increase leaching losses of N from forests approaching N saturation.

7.
Oecologia ; 87(4): 495-499, 1991 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28313690

RESUMO

In order to monitor the nitrate assimilation capability of mire plants, in vivo current and maximally induced nitrate reductase activity (NRA) were investigated in 14 species of vascular plants from four different sites in a central Swedish mire. One of the sites was a swamp forest. The plants studied included species with both wide and restricted ecological ranges, and the mire sites selected covered a wide range of plant productivity. At the most productive site, current NRA differed among coexisting species. This differentiation in the use of nitrate as a source of nitrogen suggested the possibility of resource partitioning with regard to nitrogen acquisition. Maximally induced NRA, measured 3 days after an addition of nitrate, was highest at the most productive sites and differed among coexisting species. Plant species characteristic of rich fens had the highest maximally induced NRA. In all species, there was a positive correlation between the ability to assimilate peaks of available nitrate and total leaf nitrogen concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA