Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 11 Suppl 1: 60-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19778369

RESUMO

Spring wheat (Triticum aestivum L. cv. TRISO) was grown for three consecutive seasons in a free-air carbon dioxide (CO(2)) enrichment (FACE) field experiment in order to examine the effects on crop yield and grain quality. CO(2) enrichment promoted aboveground biomass (+11.8%) and grain yield (+10.4%). However, adverse effects were predominantly observed on wholegrain quality characteristics. Although the thousand-grain weight remained unchanged, size distribution was significantly shifted towards smaller grains, which may directly relate to lower market value. Total grain protein concentration decreased significantly by 7.4% under elevated CO(2), and protein and amino acid composition were altered. Corresponding to the decline in grain protein concentration, CO(2) enrichment resulted in an overall decrease in amino acid concentrations, with greater reductions in non-essential than essential amino acids. Minerals such as potassium, molybdenum and lead increased, while manganese, iron, cadmium and silicon decreased, suggesting that adjustments of agricultural practices may be required to retain current grain quality standards. The concentration of fructose and fructan, as well as amounts per area of total and individual non-structural carbohydrates, except for starch, significantly increased in the grain. The same holds true for the amount of lipids. With regard to mixing and rheological properties of the flour, a significant increase in gluten resistance under elevated CO(2) was observed. CO(2) enrichment obviously affected grain quality characteristics that are important for consumer nutrition and health, and for industrial processing and marketing, which have to date received little attention.


Assuntos
Dióxido de Carbono/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Poluentes Atmosféricos/metabolismo , Biomassa , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Proteínas de Plantas/metabolismo
2.
Environ Exp Bot ; 44(2): 151-164, 2000 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-10996368

RESUMO

Senescence is a highly regulated process which is under genetic control. In monocarpic plants, the onset of fruit development is the most important factor initiating the senescence process. During senescence, a large fraction of plant nutrients is reallocated away from vegetative tissues into generative tissues. Senescence may therefore be regarded as a highly effective salvage mechanism to save nutrients for the offspring. CO(2) enrichment, besides increasing growth and yield of C(3) plants, has often been shown to accelerate leaf senescence. C(3) plants grown under elevated CO(2) experience alterations in their nutrient relations. In particular their tissue nitrogen concentrations are always lower after exposure to elevated CO(2). We used a monocarpic C(3) crop - spring barley (Hordeum vulgare cv. Alexis) - grown in open-top field chambers to test the effects of CO(2) enrichment on growth and yield, on nitrogen acquisition and redistribution, and on the senescence process in flag leaves, at two applications of nitrogen fertilizer. CO(2) enrichment (650 vs. 366 µmol mol(-1)) caused an increase both in biomass and in grain yield by 38% (average of the two fertilizer applications) which was due to increased tillering. Total nitrogen uptake of the crops was not affected by CO(2) treatment but responded solely to the N supply. Nitrogen concentrations in grains and straw were significantly lower (-33 and -24%) in plants grown at elevated CO(2). Phenological development was not altered by CO(2) until anthesis. However, progress of flag leaf senescence as assessed by chlorophyll content, protein content and content of large and small subunit of RubisCO and of cytochrome b559 was enhanced under elevated CO(2) concentrations by approximately 4 days. We postulate that CO(2) enhanced flag leaf senescence in barley crops by increasing the nitrogen sink capacity of the grains.

3.
Environ Pollut ; 96(1): 43-59, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-15093431

RESUMO

CO(2) enrichment is expected to alter leaf demand for nitrogen and phosphorus in plant species with C(3) carbon dioxide fixation pathway, thus possibly causing nutrient imbalances in the tissues and disturbance of distribution and redistribution patterns within the plants. To test the influence of CO(2) enrichment and elevated tropospheric ozone in combination with different nitrogen supply, spring wheat (Tritium aestivum L. cv. Minaret) was exposed to three levels of CO(2) (361, 523, and 639 microl litre(-1), 24 h mean from sowing to final harvest), two levels of ozone (28.4 and 51.3 nl litre(-1)) and two levels of nitrogen supply (150 and 270 kg ha(-1)) in a full-factorial design in open-top field chambers. Additional fertilization experiments (120, 210, and 330 kg N ha(-1)) were carried out at low and high CO(2) levels. Macronutrients (N, P, K, S, Ca, Mg) and three micronutrients (Mn, Fe, Zn) were analysed in samples obtained at three different developmental stages: beginning of shoot elongation, anthesis, and ripening. At each harvest, plant samples were separated into different organs (green and senescent leaves, stem sections, ears, grains). According to analyses of tissue concentrations at the beginning of shoot elongation, the plants were sufficiently equipped with nutrients. Elevated ozone levels neither affected tissue concentrations nor shoot uptake of the nutrients. CO(2) and nitrogen treatments affected nutrient uptake, distribution and redistribution in a complex manner. CO(2) enrichment increased nitrogen-use efficiency and caused a lower demand for nitrogen in green tissues which was reflected in a decrease of critical nitrogen concentrations, lower leaf nitrogen concentrations and lower nitrogen pools in the leaves. Since grain nitrogen uptake during grain filling depended completely on redistribution from vegetative pools in green tissues, grain nitrogen concentrations fell considerably with severe implications for grain quality. Ca, S, Mg and Zn in green tissues were influenced by CO(2) enrichment in a similar manner to nitrogen. Phosphorus concentrations in green tissues, on the other hand, were not, or only slightly, affected by elevated CO(2). In stems, 'dilution' of all nutrients except manganese was observed, caused by the huge accumulation of water soluble carbohydrates, mainly fructans, in these tissues under CO(2) enrichment. Whole shoot uptake was either remarkably increased (K, Mn, P, Mg), nearly unaffected (N, S, Fe, Zn) or decreased (Ca) under CO(2) enrichment. Thus, nutrient cycling in plant-soil systems is expected to be altered under CO(2) enrichment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA