Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 544: 144-154, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30831548

RESUMO

HYPOTHESIS: The application of dynamic light scattering (DLS) is well-established for measuring diffusion coefficients related to either molecular or translational micelle diffusion. The simultaneous determination of both transport properties should be feasible, but has not been reported in the literature yet. EXPERIMENTS: Different diffusion modes present in a microemulsion and selected subsystems consisting of a polyol mixture, a binary surfactant mixture, and carbon dioxide (CO2) were investigated systematically by DLS at temperatures of (314, 333, and 353) K and corresponding pressures of (10, 13, and 16) MPa. FINDINGS: Diffusion coefficients related to molecular and translational micelle diffusion could be measured simultaneously and increase with increasing temperature. From the translational diffusion coefficients, an increase in the hydrodynamic diameter of the micelles from their non-swollen to the CO2-swollen state being in agreement with literature data for the same and similar microemulsions was found. The effective diffusion coefficients related to the faster molecular diffusion process only observable in the presence of CO2 are not affected significantly by the surfactant. The time-dependent parts of the recorded intensity correlation functions related to molecular diffusion processes are heterodyne because the scattered light modulated by molecular concentration fluctuations is superimposed with light scattered by the micelles.

2.
J Colloid Interface Sci ; 499: 202-208, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28384538

RESUMO

The applicability of dynamic light scattering (DLS) for the characterization of the size of supercritical carbon dioxide (sc-CO2)-swollen micelles in a polyester polyol-based multicomponent microemulsion with nonionic surfactant has been thoroughly proved for the first time in this work. Systematic experiments confirming that a hydrodynamic mode is observable in either a homodyne or a heterodyne detection scheme as well as the evaluation of the influence of the laser power applied to the slightly colored microemulsion have ensured an accurate implementation of this technique for a technically relevant system. The correlation times associated with the translational diffusion coefficient of the swollen micelles in a continuous liquid phase were measured for temperatures from (298.15 to 338.15)K at pressures of (90 and 100)bar. While there was no significant effect of pressure, it was found that the translational diffusion coefficient increases with increasing temperature as expected. We postulate this is primarily related to the effect of decreasing viscosity of the continuous phase. An estimation of the hydrodynamic diameter of the sc-CO2-swollen micelles is in good agreement with values for similar systems reported in the literature. For the derivation of absolute sizes for corresponding systems, also dynamic viscosity and refractive index data will be determined simultaneously in a currently developed closed experimental loop.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA