Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Tipo de estudo
Intervalo de ano de publicação
1.
Acta Pharmaceutica Sinica B ; (6): 1274-1286, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-971746

RESUMO

Lipid-formulated RNA vaccines have been widely used for disease prevention and treatment, yet their mechanism of action and individual components contributing to such actions remain to be delineated. Here, we show that a therapeutic cancer vaccine composed of a protamine/mRNA core and a lipid shell is highly potent in promoting cytotoxic CD8+ T cell responses and mediating anti-tumor immunity. Mechanistically, both the mRNA core and lipid shell are needed to fully stimulate the expression of type I interferons and inflammatory cytokines in dendritic cells. Stimulation of interferon-β expression is exclusively dependent on STING, and antitumor activity from the mRNA vaccine is significantly compromised in mice with a defective Sting gene. Thus, the mRNA vaccine elicits STING-dependent antitumor immunity.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-469576

RESUMO

Development of optimal SARS-CoV-2 vaccines to induce potent, long-lasting immunity and provide cross-reactive protection against emerging variants remains a high priority. Here, we report that a modified porous silicon microparticle (mPSM)-adjuvanted SARS-CoV-2 receptor-binding domain (RBD) vaccine activated dendritic cells and generated more potent and durable SARS-CoV-2-specific systemic humoral and type 1 helper T (Th) cell-mediated immune responses than alum-formulated RBD following parenteral vaccination, and protected mice from SARS-CoV-2 and Beta variant infection. mPSM facilitated the uptake of SARS-CoV-2 RBD antigens by nasal and airway epithelial cells. Parenteral and intranasal prime and boost vaccinations with mPSM-RBD elicited potent systemic and lung resident memory T and B cells and SARS-CoV-2 specific IgA responses, and markedly diminished viral loads and inflammation in the lung following SARS-CoV-2 Delta variant infection. Our results suggest that mPSM can serve as potent adjuvant for SARS-CoV-2 subunit vaccine which is effective for systemic and mucosal vaccination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA