Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(44): 11657-11662, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078312

RESUMO

Intense thunderstorms produce rapid cloud updrafts and may be associated with a range of destructive weather events. An important ingredient in measures of the potential for intense thunderstorms is the convective available potential energy (CAPE). Climate models project increases in summertime mean CAPE in the tropics and subtropics in response to global warming, but the physical mechanisms responsible for such increases and the implications for future thunderstorm activity remain uncertain. Here, we show that high percentiles of the CAPE distribution (CAPE extremes) also increase robustly with warming across the tropics and subtropics in an ensemble of state-of-the-art climate models, implying strong increases in the frequency of occurrence of environments conducive to intense thunderstorms in future climate projections. The increase in CAPE extremes is consistent with a recently proposed theoretical model in which CAPE depends on the influence of convective entrainment on the tropospheric lapse rate, and we demonstrate the importance of this influence for simulated CAPE extremes using a climate model in which the convective entrainment rate is varied. We further show that the theoretical model is able to account for the climatological relationship between CAPE and a measure of lower-tropospheric humidity in simulations and in observations. Our results provide a physical basis on which to understand projected future increases in intense thunderstorm potential, and they suggest that an important mechanism that contributes to such increases may be present in Earth's atmosphere.

2.
J Atmos Sci ; 73(5): 1967-1985, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-32817996

RESUMO

Column water vapor (CWV) is studied using data from the Dynamics of the Madden-Julian Oscillation (DYNAMO) field experiment. A distinctive moist mode in tropical CVW probability distributions motivates the work. The Lagrangian CWV tendency (LCT) leaves together the compensating tendencies from phase change and vertical advection, quantities which cannot be measured accurately by themselves, to emphasize their small residual, which governs evolution. The slope of LCT vs. CWV suggests that the combined effects of phase changes and vertical advection act as a robust positive feedback on CWV variations, while evaporation adds a broadscale positive tendency. Analyzed diabatic heating profiles become deeper and stronger as CWV increases. Stratiform heating is found to accompany Lagrangian drying at high CWV, but its association with deep convection makes the mean LCT positive at high CWV. Lower-tropospheric wind convergence is found in high-CVW airmasses, acting to shrink their area in time. When ECMWF heating profile indices and S-POL and TRMM radar data are binned jointly by CWV and LCT, bottom-heavy heating associated with shallow and congestus convection is found in columns transitioning through Lagrangian moistening into the humid, high-rainrate mode of the CWV distribution near 50-55mm, while non-raining columns and columns with widespread stratiform precipitation are preferentially associated with Lagrangian drying. Interpolated sounding-array data produce substantial errors in LCT budgets, because horizontal advection is inaccurate without satellite input to constrain horizontal gradients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA