Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mass Spectrom ; 59(1): e4987, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38108556

RESUMO

Increased acceptance of cannabis containing the psychoactive component, Δ9-tetrahydrocannabinol (THC), raises concerns about the potential for impaired drivers and increased highway accidents. In contrast to the "breathalyzer" test, which is generally accepted for determining the alcohol level in a driver, there is no currently accepted roadside test for THC in a motorist. There is a need for an easily collectible biological sample from a potentially impaired driver coupled with an accurate on-site test to measure the presence and quantity of THC in a driver. A novel breath collection device is described, which includes three separate sample collectors for collecting identical A, B, and C breath samples from a subject. A simple one-step ethanol extraction of the "A" breath collector sample can be analyzed by UHPLC/selected ion monitoring (SIM) liquid chromatography/mass spectrometry (LC/MS) to provide qualitative and quantitative determination of THC in breath sample in less than 4 min for samples collected up to 6 h after smoking a cannabis cigarette. SIM LC/MS bioanalyses employed d3-THC as the stable isotope internal standard fortified in negative control breath samples for quantitation including replicates of six calibrator standards and three quality control (QC) samples. Subsequent confirmation of the same breath sample in the B collectors was then confirmed by a reference lab by LC/MS/MS analysis. Fit-for-purpose bioanalytical validation consistent with pharmaceutical regulated bioanalyses produced pharmacokinetic (PK) curves for the two volunteer cannabis smokers. These results produced PK curves, which showed a rapid increase of THC in the breath of the subjects in the first hour followed by reduced THC levels in the later time points. A simpler single-point calibration curve procedure with calibrators and QC prepared in ethanol provided similar results. Limitations to this approach include the higher cost and operator skill sets for the instrumentation employed and the inability to actually determine driver impairment.


Assuntos
Cannabis , Alucinógenos , Humanos , Dronabinol , Espectrometria de Massas em Tandem , Etanol
2.
Anal Methods ; 13(31): 3453-3460, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34291248

RESUMO

Rapid screening for chemical traces of explosives and narcotics is widely used to support homeland security and law enforcement. These target compounds span a range of physicochemical properties from organic to inorganic, with preferential ionization pathways in both negative and positive mode operation. Nonvolatile inorganic oxidizers present in homemade fuel-oxidizer mixtures, pyrotechnics, and propellants create a unique challenge to traditional thermal desorption-based technologies. Developments in solid-liquid extraction techniques, specifically, open port sampling interface mass spectrometry (OPSI-MS) provide compelling capabilities to address these hurdles. In this proof of concept study, we investigated the trace detection of wipe-based (i.e., common swipe sampling collection method) explosives, oxidizers, and narcotics using an OPSI source and compact single quadrupole mass analyzer. The liquid dissolution and extraction capabilities of OPSI enabled detection of both traditional military-grade explosives and homemade explosive oxidizers. OPSI-MS sensitivities to a series of seven target compounds from polytetrafluoroethylene (PTFE) coated fiberglass sampling wipes were on the order of several nanograms to sub-nanogram levels. Comparisons with direct solution-based sample analysis enabled quantification of wipe-based sample extraction effects. The system demonstrated quick temporal responses, polarity switching capabilities, and rapid signal decay with minimal carryover, all critical to high throughput screening applications. Coupling traditional swipe sampling with OPSI-MS offers a promising tool for contraband screening applications.


Assuntos
Substâncias Explosivas , Espectrometria de Massas , Entorpecentes
3.
J Am Soc Mass Spectrom ; 22(1): 67-74, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21472545

RESUMO

Herein we describe a new method, targeted enhanced multiply charged scans (tEMC), for the quantification of therapeutic peptides in tandem mass spectrometry on the linear ion trap mass spectrometer. Therapeutic peptides with chain lengths between eight and 39 amino acid residues and charge states from 2+ to 6+ were used to evaluate and illustrate the method which relies on the ability to separate ions trapped in a linear ion trap according to their charges. In particular, interference from singly charged ions on multiply charged ions can be effectively minimized. The method requires optimization of relatively few parameters, the most important of which being the exit lens barrier (EXB) voltage, thereby offering substantial time saving in a high-throughput quantification environment that currently relies on selected reaction monitoring.


Assuntos
Peptídeos Catiônicos Antimicrobianos/análise , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Neuropeptídeos/análise , Hormônios Peptídicos/análise , Animais , Abelhas , Humanos , Neuropeptídeos/sangue , Hormônios Peptídicos/sangue , Reprodutibilidade dos Testes , Suínos
4.
Rapid Commun Mass Spectrom ; 24(15): 2262-8, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20623481

RESUMO

Ultraviolet photodissociation (UVPD) was evaluated as a technique for generating ion fragmentation information that is alternative and/or complementary to the information obtained by collision-induced dissociation (CID). Ions trapped in a pressurized linear ion trap were dissociated using a 355 nm or a 266 nm pulsed laser. Comparisons of UVPD and CID spectra using a set of aromatic chromophore-containing compounds (desmethyl bosentan, haloperidol, nelfinavir) demonstrated distinct characteristic fragmentation patterns resulting from photodissociation. The wavelength of light and the pressure of the buffer gas in the UVPD cell are important parameters that control fragmentation pathways. The wavelength effect is related to the absorption cross section, location of the chromophore and the energy carried by one photon. Thus, UV irradiation wavelength affects fragmentation pathways as well as the fragmentation rate. The pressure effect can be explained by collisional quenching of 'slow' fragmentation pathways. We observed that higher pressure of the buffer gas during UVPD experiments highlights unique fragment ions by suppressing slow fragmentation pathways responsible for CID-like fragmentation patterns.


Assuntos
Preparações Farmacêuticas/química , Estrutura Molecular , Fotólise/efeitos da radiação , Espectrometria de Massas por Ionização por Electrospray , Raios Ultravioleta
5.
J Phys Chem A ; 113(20): 5855-64, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19405502

RESUMO

In contrast to previously reported electron-super-rich trihydroxy-, triamino- and diaminohydroxymethyl radicals, the title aminodihydroxymethyl radical (1) generates a fraction of metastable species in the form of their deuterium isotopologues. The lifetimes of metastable radicals produced by femtosecond collisional electron transfer to aminodihydroxymethyl cations exceed 4 mus. The main fraction of 1 dissociates by fast loss of a hydroxyl hydrogen atom to form carbamic acid. Loss of an amino hydrogen atom is less facile and becomes <10% competitive at high internal energies or if the main dissociation is slowed down by deuterium isotope effects. RRKM calculations of unimolecular rate constants on a CCSD(T)/aug-cc-pVTZ potential energy surface gave a reasonably good fit for the competitive dissociations of 1 but not for the fraction of nondissociating radicals. The metastable species are attributed to excited electronic states which are predicted to have favorable Franck-Condon factors for being formed by collisional electron transfer.


Assuntos
Elétrons , Gases/química , Metilaminas/química , Isótopos/química , Cinética , Temperatura , Termodinâmica
6.
J Am Soc Mass Spectrom ; 20(4): 639-51, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19185509

RESUMO

1,n-Alkanediammonium cations in noncovalent complexes with two dibenzo-18-crown-6-ether (DBCE) ligands undergo an unusual intramolecular tandem hydrogen atom and proton transfer to the crown ether ligand upon charge reduction by electron capture. Deuterium labeling established that both migrating hydrogens originated from the ammonium groups. The double hydrogen transfer was found to depend on the length of the alkane chain connecting the ammonium groups. Ab initio calculations provided structures for select alkanediammonium.dibenzo-18-crown-6-ether complexes and dissociation products. This first observation of an intra-complex hydrogen transfer is explained by the unusual electronic properties of the complexes and the substantial hydrogen atom affinity of the aromatic rings in the crown ligand.

7.
J Am Chem Soc ; 130(27): 8818-33, 2008 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-18597436

RESUMO

We report the first detailed analysis at correlated levels of ab initio theory of experimentally studied peptide cations undergoing charge reduction by collisional electron transfer and competitive dissociations by loss of H atoms, ammonia, and N-C alpha bond cleavage in the gas phase. Doubly protonated Gly-Lys, (GK + 2H) (2+), and Lys-Lys, (KK + 2H) (2+), are each calculated to exist as two major conformers in the gas phase. Electron transfer to conformers with an extended lysine chain triggers highly exothermic dissociation by loss of ammonia from the Gly residue, which occurs from the ground ( X ) electronic state of the cation radical. Loss of Lys ammonium H atoms is predicted to occur from the first excited ( A ) state of the charge-reduced ions. The X and A states are nearly degenerate and show extensive delocalization of unpaired electron density over spatially remote groups. This delocalization indicates that the captured electron cannot be assigned to reduce a particular charged group in the peptide cation and that superposition of remote local Rydberg-like orbitals plays a critical role in affecting the cation-radical reactivity. Electron attachment to ion conformers with carboxyl-solvated Lys ammonium groups results in spontaneous isomerization by proton-coupled electron transfer to the carboxyl group forming dihydroxymethyl radical intermediates. This directs the peptide dissociation toward NC alpha bond cleavage that can proceed by multiple mechanisms involving reversible proton migrations in the reactants or ion-molecule complexes. The experimentally observed formations of Lys z (+*) fragments from (GK + 2H) (2+) and Lys c (+) fragments from (KK + 2H) (2+) correlate with the product thermochemistry but are independent of charge distribution in the transition states for NC alpha bond cleavage. This emphasizes the role of ion-molecule complexes in affecting the charge distribution between backbone fragments produced upon electron transfer or capture.


Assuntos
Elétrons , Peptídeos/química , Prótons , Transporte de Elétrons , Gases/química , Glicina/química , Cinética , Lisina/química , Compostos de Amônio Quaternário/química
8.
J Phys Chem A ; 111(36): 8829-43, 2007 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-17705355

RESUMO

Diaminohydroxymethyl (1) and triaminomethyl (2) radicals were generated by femtosecond collisional electron transfer to their corresponding cations (1+ and 2+, respectively) and characterized by neutralization-reionization mass spectrometry and ab initio/RRKM calculations at correlated levels of theory up to CCSD(T)/aug-cc-pVTZ. Ion 1+ was generated by gas-phase protonation of urea which was predicted to occur preferentially at the carbonyl oxygen with the 298 K proton affinity that was calculated as PA = 875 kJ mol-1. Upon formation, radical 1 gains vibrational excitation through Franck-Condon effects and rapidly dissociates by loss of a hydrogen atom, so that no survivor ions are observed after reionization. Two conformers of 1, syn-1 and anti-1, were found computationally as local energy minima that interconverted rapidly by inversion at one of the amine groups with a <7 kJ mol-1 barrier. The lowest energy dissociation of radical 1 was loss of the hydroxyl hydrogen atom from anti-1 with ETS = 65 kJ mol-1. The other dissociation pathways of 1 were a hydroxyl hydrogen migration to an amine group followed by dissociation to H2N-C=O* and NH3. Ion 2+ was generated by protonation of gas-phase guanidine with a PA = 985 kJ mol-1. Electron transfer to 2+ was accompanied by large Franck-Condon effects that caused complete dissociation of radical 2 by loss of an H atom on the experimental time scale of 4 mus. Radicals 1 and 2 were calculated to have extremely low ionization energies, 4.75 and 4.29 eV, respectively, which belong to the lowest among organic molecules and bracket the ionization energy of atomic potassium (4.34 eV). The stabilities of amino group containing methyl radicals, *CH2NH2, *CH(NH2)2, and 2, were calculated from isodesmic hydrogen atom exchange with methane. The pi-donating NH2 groups were found to increase the stability of the substituted methyl radicals, but the stabilities did not correlate with the radical ionization energies.

9.
J Am Chem Soc ; 129(4): 846-52, 2007 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-17243821

RESUMO

The xenon-fluoride bond dissociation energy in XeF3- has been measured by using energy-resolved collision-induced dissociation studies of the ion. The measured value, 0.84 +/- 0.06 eV, is higher than that predicted by electrostatic and three-center, four-electron bonding models. The bonding in XeF3- is qualitatively described by using molecular orbital approaches, using either a diradical approach or orbital interaction models. Two low-energy singlet structures are identified for XeF3-, consisting of Y- and T-shaped geometries, and there is a higher energy D3h triplet state. Electronic structure calculations predict the Y geometry to be the lowest energy structure, which can rearrange by pseudorotation through the T geometry. Orbital correlation diagrams indicate that that ion dissociates by first rearranging to the T structure before losing fluoride.

10.
J Phys Chem A ; 109(9): 2026-34, 2005 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16833538

RESUMO

The gas-phase strengths of the A-Cl(-) bonds in ACl(5)(-), ACl(4)F(-), and A(CH(3))(3)Cl(2)(-) (A = Si, Ge, and Sn) have been determined by measuring thresholds for collision-induced dissociation in a flowing afterglow-tandem mass spectrometer. Bond dissociation energies increase in the order Si < Ge < Sn. Replacement of the three equatorial chlorides with methyl groups weakens the bonds, while replacing one axial chloride with a fluoride strengthens the bonds. Computational results using the B3LYP model with several basis sets parallel the experimental periodic trends, but provide bond dissociation energies lower than experiment by 7-44 kJ mol(-1). MP2 computational results are in better agreement with experiment. The results are consistent with steric hindrance and electrostatic effects playing significant roles in the bonding energetics.


Assuntos
Germânio/química , Compostos Organometálicos/química , Compostos de Organossilício/química , Silício/química , Estanho/química , Simulação por Computador , Espectrometria de Massas , Teoria Quântica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA