Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Elife ; 132024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319780

RESUMO

Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997-2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity.


Seasonal influenza (flu) viruses cause outbreaks every winter. People infected with influenza typically develop mild respiratory symptoms. But flu infections can cause serious illness in young children, older adults and people with chronic medical conditions. Infected or vaccinated individuals develop some immunity, but the viruses evolve quickly to evade these defenses in a process called antigenic drift. As the viruses change, they can re-infect previously immune people. Scientists update the flu vaccine yearly to keep up with this antigenic drift. The immune system fights flu infections by recognizing two proteins, known as antigens, on the virus's surface, called hemagglutinin (HA) and neuraminidase (NA). However, mutations in the genes encoding these proteins can make them unrecognizable, letting the virus slip past the immune system. Scientists would like to know how these changes affect the size, severity and timing of annual influenza outbreaks. Perofsky et al. show that tracking genetic changes in HA and NA may help improve flu season predictions. The experiments compared the severity of 22 flu seasons caused by the A(H3N2) subtype in the United States with how much HA and NA had evolved since the previous year. The A(H3N2) subtype experiences the fastest rates of antigenic drift and causes more cases and deaths than other seasonal flu viruses. Genetic changes in HA and NA were a better predictor of A(H3N2) outbreak severity than the blood tests for protective antibodies that epidemiologists traditionally use to track flu evolution. However, the prevalence of another subtype of influenza A circulating in the population, called A(H1N1), was an even better predictor of how severe A(H3N2) outbreaks would be. Perofsky et al. are the first to show that genetic changes in NA contribute to the severity of flu seasons. Previous studies suggested a link between genetic changes in HA and flu season severity, and flu vaccines include the HA protein to help the body recognize new influenza strains. The results suggest that adding the NA protein to flu vaccines may improve their effectiveness. In the future, flu forecasters may want to analyze genetic changes in both NA and HA to make their outbreak predictions. Tracking how much of the A(H1N1) subtype is circulating may also be useful for predicting the severity of A(H3N2) outbreaks.


Assuntos
Deriva e Deslocamento Antigênicos , Epidemias , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Estados Unidos/epidemiologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Influenza Humana/imunologia , Humanos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Deriva e Deslocamento Antigênicos/genética , Criança , Adulto , Neuraminidase/genética , Neuraminidase/imunologia , Adolescente , Pré-Escolar , Antígenos Virais/imunologia , Antígenos Virais/genética , Adulto Jovem , Evolução Molecular , Estações do Ano , Pessoa de Meia-Idade
2.
Lancet Infect Dis ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39276782

RESUMO

BACKGROUND: The emergence of SARS-CoV-2 variants and COVID-19 vaccination have resulted in complex exposure histories. Rapid assessment of the effects of these exposures on neutralising antibodies against SARS-CoV-2 infection is crucial for informing vaccine strategy and epidemic management. We aimed to investigate heterogeneity in individual-level and population-level antibody kinetics to emerging variants by previous SARS-CoV-2 exposure history, to examine implications for real-time estimation, and to examine the effects of vaccine-campaign timing. METHODS: Our Bayesian hierarchical model of antibody kinetics estimated neutralising-antibody trajectories against a panel of SARS-CoV-2 variants quantified with a live virus microneutralisation assay and informed by individual-level COVID-19 vaccination and SARS-CoV-2 infection histories. Antibody titre trajectories were modelled with a piecewise linear function that depended on the key biological quantities of an initial titre value, time the peak titre is reached, set-point time, and corresponding rates of increase and decrease for gradients between two timing parameters. All process parameters were estimated at both the individual level and the population level. We analysed data from participants in the University College London Hospitals-Francis Crick Institute Legacy study cohort (NCT04750356) who underwent surveillance for SARS-CoV-2 either through asymptomatic mandatory occupational health screening once per week between April 1, 2020, and May 31, 2022, or symptom-based testing between April 1, 2020, and Feb 1, 2023. People included in the Legacy study were either Crick employees or health-care workers at three London hospitals, older than 18 years, and gave written informed consent. Legacy excluded people who were unable or unwilling to give informed consent and those not employed by a qualifying institution. We segmented data to include vaccination events occurring up to 150 days before the emergence of three variants of concern: delta, BA.2, and XBB 1.5. We split the data for each wave into two categories: real-time and retrospective. The real-time dataset contained neutralising-antibody titres collected up to the date of emergence in each wave; the retrospective dataset contained all samples until the next SARS-CoV-2 exposure of each individual, whether vaccination or infection. FINDINGS: We included data from 335 participants in the delta wave analysis, 223 (67%) of whom were female and 112 (33%) of whom were male (median age 40 years, IQR 22-58); data from 385 participants in the BA.2 wave analysis, 271 (70%) of whom were female and 114 (30%) of whom were male (41 years, 22-60); and data from 248 participants in the XBB 1.5 wave analysis, 191 (77%) of whom were female, 56 (23%) of whom were male, and one (<1%) of whom preferred not to say (40 years, 21-59). Overall, we included 968 exposures (vaccinations) across 1895 serum samples in the model. For the delta wave, we estimated peak titre values as 490·0 IC50 (95% credible interval 224·3-1515·9) for people with no previous infection and as 702·4 IC50 (300·8-2322·7) for people with a previous infection before omicron; the delta wave did not include people with a previous omicron infection. For the BA.2 wave, we estimated peak titre values as 858·1 IC50 (689·8-1363·2) for people with no previous infection, 1020·7 IC50 (725·9-1722·6) for people with a previous infection before omicron, and 1422·0 IC50 (679·2-3027·3) for people with a previous omicron infection. For the XBB 1.5 wave, we estimated peak titre values as 703·2 IC50 (415·0-3197·8) for people with no previous infection, 1215·9 IC50 (511·6-7338·7) for people with a previous infection before omicron, and 1556·3 IC50 (757·2-7907·9) for people with a previous omicron infection. INTERPRETATION: Our study shows the feasibility of real-time estimation of antibody kinetics before SARS-CoV-2 variant emergence. This estimation is valuable for understanding how specific combinations of SARS-CoV-2 exposures influence antibody kinetics and for examining how COVID-19 vaccination-campaign timing could affect population-level immunity to emerging variants. FUNDING: Wellcome Trust, National Institute for Health Research University College London Hospitals Biomedical Research Centre, UK Research and Innovation, UK Medical Research Council, Francis Crick Institute, and Genotype-to-Phenotype National Virology Consortium.

4.
PLoS One ; 19(3): e0294897, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512960

RESUMO

BACKGROUND: SARS-CoV-2 variant Omicron rapidly evolved over 2022, causing three waves of infection due to sub-variants BA.1, BA.2 and BA.4/5. We sought to characterise symptoms and viral loads over the course of COVID-19 infection with these sub-variants in otherwise-healthy, vaccinated, non-hospitalised adults, and compared data to infections with the preceding Delta variant of concern (VOC). METHODS: In a prospective, observational cohort study, healthy vaccinated UK adults who reported a positive polymerase chain reaction (PCR) or lateral flow test, self-swabbed on alternate weekdays until day 10. We compared participant-reported symptoms and viral load trajectories between infections caused by VOCs Delta and Omicron (sub-variants BA.1, BA.2 or BA.4/5), and tested for relationships between vaccine dose, symptoms and PCR cycle threshold (Ct) as a proxy for viral load using Chi-squared (χ2) and Wilcoxon tests. RESULTS: 563 infection episodes were reported among 491 participants. Across infection episodes, there was little variation in symptom burden (4 [IQR 3-5] symptoms) and duration (8 [IQR 6-11] days). Whilst symptom profiles differed among infections caused by Delta compared to Omicron sub-variants, symptom profiles were similar between Omicron sub-variants. Anosmia was reported more frequently in Delta infections after 2 doses compared with Omicron sub-variant infections after 3 doses, for example: 42% (25/60) of participants with Delta infection compared to 9% (6/67) with Omicron BA.4/5 (χ2 P < 0.001; OR 7.3 [95% CI 2.7-19.4]). Fever was less common with Delta (20/60 participants; 33%) than Omicron BA.4/5 (39/67; 58%; χ2 P = 0.008; OR 0.4 [CI 0.2-0.7]). Amongst infections with an Omicron sub-variants, symptoms of coryza, fatigue, cough and myalgia predominated. Viral load trajectories and peaks did not differ between Delta, and Omicron, irrespective of symptom severity (including asymptomatic participants), VOC or vaccination status. PCR Ct values were negatively associated with time since vaccination in participants infected with BA.1 (ß = -0.05 (CI -0.10-0.01); P = 0.031); however, this trend was not observed in BA.2 or BA.4/5 infections. CONCLUSION: Our study emphasises both the changing symptom profile of COVID-19 infections in the Omicron era, and ongoing transmission risk of Omicron sub-variants in vaccinated adults. TRIAL REGISTRATION: NCT04750356.


Assuntos
COVID-19 , Adulto , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Estudos Prospectivos , Vacinação
5.
Euro Surveill ; 29(3)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38240057

RESUMO

Under International Health Regulations from 2005, a human infection caused by a novel influenza A virus variant is considered an event that has potential for high public health impact and is immediately notifiable to the World Health Organisation. We here describe the clinical, epidemiological and virological features of a confirmed human case of swine influenza A(H1N2)v in England detected through community respiratory virus surveillance. Swabbing and contact tracing helped refine public health risk assessment, following this unusual and unexpected finding.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Humanos , Suínos , Vírus da Influenza A Subtipo H1N2 , Vírus da Influenza A Subtipo H1N1/genética , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/epidemiologia , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Inglaterra/epidemiologia
6.
PLoS Biol ; 22(1): e3002463, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38289907

RESUMO

The emergence of successive Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) during 2020 to 2022, each exhibiting increased epidemic growth relative to earlier circulating variants, has created a need to understand the drivers of such growth. However, both pathogen biology and changing host characteristics-such as varying levels of immunity-can combine to influence replication and transmission of SARS-CoV-2 within and between hosts. Disentangling the role of variant and host in individual-level viral shedding of VOCs is essential to inform Coronavirus Disease 2019 (COVID-19) planning and response and interpret past epidemic trends. Using data from a prospective observational cohort study of healthy adult volunteers undergoing weekly occupational health PCR screening, we developed a Bayesian hierarchical model to reconstruct individual-level viral kinetics and estimate how different factors shaped viral dynamics, measured by PCR cycle threshold (Ct) values over time. Jointly accounting for both interindividual variation in Ct values and complex host characteristics-such as vaccination status, exposure history, and age-we found that age and number of prior exposures had a strong influence on peak viral replication. Older individuals and those who had at least 5 prior antigen exposures to vaccination and/or infection typically had much lower levels of shedding. Moreover, we found evidence of a correlation between the speed of early shedding and duration of incubation period when comparing different VOCs and age groups. Our findings illustrate the value of linking information on participant characteristics, symptom profile and infecting variant with prospective PCR sampling, and the importance of accounting for increasingly complex population exposure landscapes when analysing the viral kinetics of VOCs. Trial Registration: The Legacy study is a prospective observational cohort study of healthy adult volunteers undergoing weekly occupational health PCR screening for SARS-CoV-2 at University College London Hospitals or at the Francis Crick Institute (NCT04750356) (22,23). The Legacy study was approved by London Camden and Kings Cross Health Research Authority Research and Ethics committee (IRAS number 286469). The Legacy study was approved by London Camden and Kings Cross Health Research Authority Research and Ethics committee (IRAS number 286469) and is sponsored by University College London Hospitals. Written consent was given by all participants.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , SARS-CoV-2/genética , Teorema de Bayes , COVID-19/epidemiologia , Estudos Prospectivos
8.
medRxiv ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37873362

RESUMO

Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997-2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection dynamics, presumably via heterosubtypic cross-immunity.

9.
J Neuroinflammation ; 20(1): 184, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537664

RESUMO

BACKGROUND: Although mainly causing a respiratory syndrome, numerous neurological symptoms have been identified following of SARS-CoV-2 infection. However, how the virus affects the brain and how the mutations carried by the different variants modulate those neurological symptoms remain unclear. METHODS: We used primary human pericytes, foetal astrocytes, endothelial cells and a microglial cell line to investigate the effect of several SARS-CoV-2 variants of concern or interest on their functional activities. Cells and a 3D blood-brain barrier model were infected with the wild-type form of SARS-CoV-2, Alpha, Beta, Delta, Eta, or Omicron (BA.1) variants at various MOI. Cells and supernatant were used to evaluate cell susceptibility to the virus using a microscopic assay as well as effects of infection on (i) cell metabolic activity using a colorimetric MTS assay; (ii) viral cytopathogenicity using the xCELLigence system; (iii) extracellular glutamate concentration by fluorometric assay; and (iv) modulation of blood-brain barrier permeability. RESULTS: We demonstrate that productive infection of brain cells is SARS-CoV-2 variant dependent and that all the variants induce stress to CNS cells. The wild-type virus was cytopathic to all cell types except astrocytes, whilst Alpha and Beta variants were only cytopathic for pericytes, and the Omicron variant cytopathic for endothelial cells and pericytes. Lastly wild-type virus increases blood-brain barrier permeability and all variants, except Beta, modulate extracellular glutamate concentration, which can lead to excitotoxicity or altered neurotransmission. CONCLUSIONS: These results suggest that SARS-CoV-2 is neurotropic, with deleterious consequences for the blood-brain barrier integrity and central nervous system cells, which could underlie neurological disorders following SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Barreira Hematoencefálica , Células Endoteliais , Ácido Glutâmico
10.
medRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292842

RESUMO

The emergence of successive SARS-CoV-2 variants of concern (VOC) during 2020-22, each exhibiting increased epidemic growth relative to earlier circulating variants, has created a need to understand the drivers of such growth. However, both pathogen biology and changing host characteristics - such as varying levels of immunity - can combine to influence replication and transmission of SARS-CoV-2 within and between hosts. Disentangling the role of variant and host in individual-level viral shedding of VOCs is essential to inform COVID-19 planning and response, and interpret past epidemic trends. Using data from a prospective observational cohort study of healthy adult volunteers undergoing weekly occupational health PCR screening, we developed a Bayesian hierarchical model to reconstruct individual-level viral kinetics and estimate how different factors shaped viral dynamics, measured by PCR cycle threshold (Ct) values over time. Jointly accounting for both inter-individual variation in Ct values and complex host characteristics - such as vaccination status, exposure history and age - we found that age and number of prior exposures had a strong influence on peak viral replication. Older individuals and those who had at least five prior antigen exposures to vaccination and/or infection typically had much lower levels of shedding. Moreover, we found evidence of a correlation between the speed of early shedding and duration of incubation period when comparing different VOCs and age groups. Our findings illustrate the value of linking information on participant characteristics, symptom profile and infecting variant with prospective PCR sampling, and the importance of accounting for increasingly complex population exposure landscapes when analysing the viral kinetics of VOCs.

13.
Nat Aging ; 3(1): 93-104, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37118525

RESUMO

Third-dose coronavirus disease 2019 vaccines are being deployed widely but their efficacy has not been assessed adequately in vulnerable older people who exhibit suboptimal responses after primary vaccination series. This observational study, which was carried out by the VIVALDI study based in England, looked at spike-specific immune responses in 341 staff and residents in long-term care facilities who received an mRNA vaccine following dual primary series vaccination with BNT162b2 or ChAdOx1. Third-dose vaccination strongly increased antibody responses with preferential relative enhancement in older people and was required to elicit neutralization of Omicron. Cellular immune responses were also enhanced with strong cross-reactive recognition of Omicron. However, antibody titers fell 21-78% within 100 d after vaccine and 27% of participants developed a breakthrough Omicron infection. These findings reveal strong immunogenicity of a third vaccine in one of the most vulnerable population groups and endorse an approach for widespread delivery across this population. Ongoing assessment will be required to determine the stability of immune protection.


Assuntos
COVID-19 , Vacinas , Humanos , Idoso , Vacina BNT162 , COVID-19/prevenção & controle , Anticorpos , Vacinas contra COVID-19 , Infecções Irruptivas
14.
Commun Biol ; 5(1): 1210, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357779

RESUMO

SARS-CoV-2 is a lipid-enveloped Betacoronavirus and cause of the Covid-19 pandemic. To study the three-dimensional architecture of the virus, we perform electron cryotomography (cryo-ET) on SARS-Cov-2 virions and three variants revealing particles of regular cylindrical morphology. The ribonucleoprotein particles packaging the genome in the virion interior form a dense, double layer assembly with a cylindrical shape related to the overall particle morphology. This organisation suggests structural interactions important to virus assembly.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Elétrons , Microscopia Crioeletrônica/métodos , Vírion
15.
Cell Rep Med ; 3(10): 100781, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36240755

RESUMO

Patients with blood cancer continue to have a greater risk of inadequate immune responses following three COVID-19 vaccine doses and risk of severe COVID-19 disease. In the context of the CAPTURE study (NCT03226886), we report immune responses in 80 patients with blood cancer who received a fourth dose of BNT162b2. We measured neutralizing antibody titers (NAbTs) using a live virus microneutralization assay against wild-type (WT), Delta, and Omicron BA.1 and BA.2 and T cell responses against WT and Omicron BA.1 using an activation-induced marker (AIM) assay. The proportion of patients with detectable NAb titers and T cell responses after the fourth vaccine dose increased compared with that after the third vaccine dose. Patients who received B cell-depleting therapies within the 12 months before vaccination have the greatest risk of not having detectable NAbT. In addition, we report immune responses in 57 patients with breakthrough infections after vaccination.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Neoplasias , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , Estudos Clínicos como Assunto , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Imunidade , SARS-CoV-2
17.
Vaccines (Basel) ; 10(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36146550

RESUMO

Inactivated vaccines are the main influenza vaccines used today; these are usually presented as split (detergent-disrupted) or subunit vaccines, while whole-virus-inactivated influenza vaccines are rare. The single radial immune diffusion (SRD) assay has been used as the gold standard potency assay for inactivated influenza vaccines for decades; however, more recently, various alternative potency assays have been proposed. A new potency test should be able to measure the amount of functional antigen in the vaccine, which in the case of influenza vaccines is the haemagglutinin (HA) protein. Potency tests should also be able to detect the loss of potency caused by changes to the structural and functional integrity of HA. To detect such changes, most alternative potency tests proposed to date use antibodies that react with native HA. Due to the frequent changes in influenza vaccine composition, antibodies may need to be updated in line with changes in vaccine viruses. We have developed two ELISA-based potency assays for group 1 influenza A viruses using cross-reactive nanobodies. The nanobodies detect influenza viruses of subtype H1N1 spanning more than three decades, as well as H5N1 viruses, in ELISA. We found that the new ELISA potency assays are sensitive to the nature of the reference antigen (standard) used to quantify vaccine antigens; using standards matched in their presentation to the vaccine type improved correspondence between the ELISA and SRD assays.

18.
J Infect ; 85(5): 545-556, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089104

RESUMO

OBJECTIVES: To investigate serological differences between SARS-CoV-2 reinfection cases and contemporary controls, to identify antibody correlates of protection against reinfection. METHODS: We performed a case-control study, comparing reinfection cases with singly infected individuals pre-vaccination, matched by gender, age, region and timing of first infection. Serum samples were tested for anti-SARS-CoV-2 spike (anti-S), anti-SARS-CoV-2 nucleocapsid (anti-N), live virus microneutralisation (LV-N) and pseudovirus microneutralisation (PV-N). Results were analysed using fixed effect linear regression and fitted into conditional logistic regression models. RESULTS: We identified 23 cases and 92 controls. First infections occurred before November 2020; reinfections occurred before February 2021, pre-vaccination. Anti-S levels, LV-N and PV-N titres were significantly lower among cases; no difference was found for anti-N levels. Increasing anti-S levels were associated with reduced risk of reinfection (OR 0·63, CI 0·47-0·85), but no association for anti-N levels (OR 0·88, CI 0·73-1·05). Titres >40 were correlated with protection against reinfection for LV-N Wuhan (OR 0·02, CI 0·001-0·31) and LV-N Alpha (OR 0·07, CI 0·009-0·62). For PV-N, titres >100 were associated with protection against Wuhan (OR 0·14, CI 0·03-0·64) and Alpha (0·06, CI 0·008-0·40). CONCLUSIONS: Before vaccination, protection against SARS-CoV-2 reinfection was directly correlated with anti-S levels, PV-N and LV-N titres, but not with anti-N levels. Detectable LV-N titres were sufficient for protection, whilst PV-N titres >100 were required for a protective effect. TRIAL REGISTRATION NUMBER: ISRCTN11041050.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/prevenção & controle , Estudos de Casos e Controles , Humanos , Reinfecção/prevenção & controle , Vacinação
19.
PLoS Pathog ; 18(8): e1010349, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36007063

RESUMO

SARS-CoV-2 is a betacoronavirus and the etiological agent of COVID-19, a devastating infectious disease. Due to its far-reaching effect on human health, there is an urgent and growing need to understand the viral molecular biology of SARS-CoV-2 and its interaction with the host cell. SARS-CoV-2 encodes 9 predicted accessory proteins, which are presumed to be dispensable for in vitro replication, most likely having a role in modulating the host cell environment to aid viral replication. Here we show that the ORF6 accessory protein interacts with cellular Rae1 to inhibit cellular protein production by blocking mRNA export. We utilised cell fractionation coupled with mRNAseq to explore which cellular mRNA species are affected by ORF6 expression and show that ORF6 can inhibit the export of many mRNA including those encoding antiviral factors such as IRF1 and RIG-I. We also show that export of these mRNA is blocked in the context of SARS-CoV-2 infection. Together, our studies identify a novel mechanism by which SARS-CoV-2 can manipulate the host cell environment to supress antiviral responses, providing further understanding to the replication strategies of a virus that has caused an unprecedented global health crisis.


Assuntos
COVID-19 , SARS-CoV-2 , Proteínas Virais/metabolismo , Antivirais , COVID-19/genética , Humanos , Imunidade Inata , Proteínas Associadas à Matriz Nuclear , Proteínas de Transporte Nucleocitoplasmático/genética , RNA Mensageiro/genética
20.
Sci Transl Med ; 14(655): eabn3715, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35895836

RESUMO

Several variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged during the current coronavirus disease 2019 (COVID-19) pandemic. Although antibody cross-reactivity with the spike glycoproteins (S) of diverse coronaviruses, including endemic common cold coronaviruses (HCoVs), has been documented, it remains unclear whether such antibody responses, typically targeting the conserved S2 subunit, contribute to protection when induced by infection or through vaccination. Using a mouse model, we found that prior HCoV-OC43 S-targeted immunity primes neutralizing antibody responses to otherwise subimmunogenic SARS-CoV-2 S exposure and promotes S2-targeting antibody responses. Moreover, vaccination with SARS-CoV-2 S2 elicited antibodies in mice that neutralized diverse animal and human alphacoronaviruses and betacoronaviruses in vitro and provided a degree of protection against SARS-CoV-2 challenge in vivo. Last, in mice with a history of SARS-CoV-2 Wuhan-based S vaccination, further S2 vaccination induced broader neutralizing antibody response than booster Wuhan S vaccination, suggesting that it may prevent repertoire focusing caused by repeated homologous vaccination. These data establish the protective value of an S2-targeting vaccine and support the notion that S2 vaccination may better prepare the immune system to respond to the changing nature of the S1 subunit in SARS-CoV-2 variants of concern, as well as to future coronavirus zoonoses.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Coronavirus Humano OC43 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Coronavirus Humano OC43/imunologia , Humanos , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA