Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 122(8): 2379-2388, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29377698

RESUMO

Recently, we have reported a systematic study of photoinduced electron-transfer reactions in ionic liquid solvents using neutral and anionic electron donors and a series of cyano-substituted anthracene acceptors [ Wu , B. ; Maroncelli , M. ; Castner , E. W. Jr Photoinduced Bimolecular Electron Transfer in Ionic Liquids . J. Am. Chem. Soc. 139 , 2017 , 14568 ]. Herein, we report complementary results for a cationic class of 1-alkyl-4-dimethylaminopyridinium electron donors. Reductive quenching of cyano-substituted anthracene fluorophores by these cationic quenchers is studied in solutions of acetonitrile and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Varying the length of the alkyl chain permits tuning of the quencher diffusivities in solution. The observed quenching kinetics are interpreted using a diffusion-reaction analysis. Together with results from the prior study, these results show that the intrinsic electron-transfer rate constant does not depend on the quencher charge in this family of reactions.

2.
J Electrochem Soc ; 164(8): H5189-H5196, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30034028

RESUMO

A comprehensive variable temperature, pressure and frequency multinuclear (1H, 2H, and 19F) magnetic resonance study was undertaken on selectively deuterated 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (BMIM TFSA) ionic liquid isotopologues. This study builds on our earlier investigation of the effects of increasing alkyl chain length on diffusion and dynamics in imidazolium-based TFSA ionic liquids. Fast field cycling 1H T1 data revealed multiple modes of motion. Through calculation of diffusion coefficient (D) values and activation energies, the low- and high-field regimes were assigned to the translational and reorientation dynamics respectively. Variable-pressure 2H T1 measurements reveal site-dependent interactions in the cation with strengths in the order MD3 > CD3 > CD2, indicating dissimilarities in the electric field gradients along the alkyl chain, with the CD2 sites having the largest gradient. Additionally, the α saturation effect in T1 vs. P was observed for all three sites, suggesting significant reduction of the short-range rapid reorientational dynamics. This reduction was also deduced from the variable pressure 1H T1 data, which showed an approach to saturation for both the methyl and butyl group terminal methyl sites. Pressure-dependent D measurements show independent motions for both cations and anions, with the cations having greater D values over the entire pressure range.

3.
J Phys Chem B ; 119(46): 14756-65, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26509865

RESUMO

Multinuclear ((1)H, (2)H, and (19)F) magnetic resonance spectroscopy techniques as functions of temperature and pressure were applied to the study of selectively deuterated 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (EMIM TFSA) ionic liquid isotopologues and related ionic liquids. For EMIM TFSA, temperature-dependent (2)H T1 data indicate stronger electric field gradients in the alkyl chain region compared to the imidazolium ring. Most significantly, the pressure dependences of the EMIM and TFSA self-diffusion coefficients revealed that the displacements of the cations and anions are independent, with diffusion of the TFSA anions being slowed much more by increasing pressure than for the EMIM cations, as shown by their respective activation volumes (28.8 ± 2.5 cm(3)/mol for TFSA vs 14.6 ± 1.3 cm(3)/mol for EMIM). Increasing pressure may lower the mobility of the TFSA anion by hindering its interconversion between trans and cis conformers, a process that is coupled to diffusion according to published molecular dynamics simulations. Measured activation volumes (ΔV(‡)) for ion self-diffusion in EMIM bis(fluoromethylsulfonyl)amide and EMIM tetrafluoroborate support this hypothesis. In addition, (2)H T1 data suggest increased ordering with increasing pressure, with two T1 regimes observed for the MD3 and D2 isotopologues between 0.1-100 and 100-250 MPa, respectively. The activation volumes for T1 were 21 and 25 cm(3)/mol (0-100 MPa) and 11 and 12 cm(3)/mol (100-250 MPa) for the MD3 and D2 isotopologues, respectively.


Assuntos
Conformação Molecular , Ânions , Difusão , Espectroscopia de Ressonância Magnética/métodos
4.
J Phys Chem B ; 117(46): 14385-99, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24147795

RESUMO

Hydrophobic room-temperature ionic liquids (ILs) hold promise as replacements for molecular diluents for processing of used nuclear fuel as well as for the development of alternative separations processes, provided that the solvent can be made resistant to ionizing radiation. We demonstrate that 1-benzylpyridinium cations are uniquely suited as radiation resistant cations due to the occurrence of charge delocalization in both their reduced and oxidized forms in the ILs. It is suggested that the excess electron and hole in the latter ILs are stabilized through the formation of π-electron sandwich dimers that are analogous to the well-known dimer radical cations of aromatic molecules. This charge delocalization dramatically reduces the yield of fragmentation by deprotonation and the loss of benzyl arms, thereby providing a synthetic path to radiation resistant ILs that are suitable for nuclear fuel processing.

5.
J Phys Chem B ; 116(30): 9043-55, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22747437

RESUMO

Room-temperature hydrophobic ionic liquids (ILs) are considered for processing of spent nuclear fuel, including as possible replacements for molecular diluents in liquid-liquid extraction. This application requires radiation stability of the constituent ions. Previous research indicated that most of the anions that are currently used in the synthesis of ILs are prone to fragmentation under prolonged radiation exposure, which causes deterioration of the corresponding ILs. An exception to this general rule is phthalimide; unfortunately, this anion is too basic to be useful for extraction solvents, as these separations involve acidic conditions. The acidity of the imide can be increased by replacing the carbonyl groups by sulfonyl groups, which incidentally transform these imides into familiar artificial sweeteners such as saccharin. In the present study, we use electron paramagnetic resonance spectroscopy, nuclear magnetic resonance spectroscopy, and mass spectrometry to assess the radiation stability of ILs based on such "sweet" sulfonyl imide anions. Our results suggest that saccharinate and o-benzenedisulfonimide are remarkably stable to radiation-induced fragmentation.

6.
J Phys Chem B ; 116(7): 2234-43, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-22296406

RESUMO

N,N,N',N'-Tetraalkyldiglycolamides are extracting agents that are used for liquid-liquid extraction of trivalent metal ions in wet processing of spent nuclear fuel. This application places such agents in contact with the decaying radionuclides, causing radiolysis of the agent in the organic diluent. Recent research seeks to replace common molecular diluents (such as n-dodecane) with hydrophobic room-temperature ionic liquids (ILs), which have superior solvation properties. In alkane diluents, rapid radiolytic deterioration of diglycolamide agents can be inhibited by addition of an aromatic cosolvent that scavenges highly reactive alkane radical cations before these oxidize the extracting agent. Do aromatic ILs exhibit a similar radioprotective effect? To answer this question, we used electron paramagnetic resonance spectroscopy to study the fragmentation pathways in radiolysis of neat diglycolamides, their model compounds, and their solutions in the ILs. Our study indicates that aromatic ILs do not protect these types of solutes from extensive radiolytic damage. Previous research indicated a similar lack of protection for crown ethers, whereas the ILs readily protected di- and trialkyl phosphates (another large class of metal-extracting agents). Our analysis of these unanticipated failures suggests that new types of organic anions are required in order to formulate ILs capable of radioprotection for these classes of solutes. This study is a cautionary tale of the fallacy of analogical thinking when applied to an entirely new and insufficiently understood class of chemical materials.

7.
J Phys Chem B ; 115(14): 3889-902, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21417369

RESUMO

In part 1 of this study, radiolytic degradation of constituent anions in ionic liquids (ILs) was examined. The present study continues the themes addressed in part 1 and examines the radiation chemistry of 1,3-dialkyl substituted imidazolium cations, which currently comprise the most practically important and versatile class of ionic liquid cations. For comparison, we also examined 1,3-dimethoxy- and 2-methyl-substituted imidazolium and 1-butyl-4-methylpyridinium cations. In addition to identification of radicals using electron paramagnetic resonance spectroscopy (EPR) and selective deuterium substitution, we analyzed stable radiolytic products using (1)H and (13)C nuclear magnetic resonance (NMR) and tandem electrospray ionization mass spectrometry (ESMS). Our EPR studies reveal rich chemistry initiated through "ionization of the ions": oxidation and the formation of radical dications in the aliphatic arms of the parent cations (leading to deprotonation and the formation of alkyl radicals in these arms) and reduction of the parent cation, yielding 2-imidazolyl radicals. The subsequent reactions of these radicals depend on the nature of the IL. If the cation is 2-substituted, the resulting 2-imidazolyl radical is relatively stable. If there is no substitution at C(2), the radical then either is protonated or reacts with the parent cation forming a C(2)-C(2) σσ*-bound dimer radical cation. In addition to these reactions, when methoxy or C(α)-substituted alkyl groups occupy the N(1,3) positions, their elimination is observed. The elimination of methyl groups from N(1,3) was not observed. Product analyses of imidazolium liquids irradiated in the very-high-dose regime (6.7 MGy) reveal several detrimental processes, including volatilization, acidification, and oligomerization. The latter yields a polymer with m/z of 650 ± 300 whose radiolytic yield increases with dose (~0.23 monomer units per 100 eV for 1-methyl-3-butylimidazolium trifluorosulfonate). Gradual generation of this polymer accounts for the steady increase in the viscosity of the ILs upon irradiation. Previous studies at lower dose have missed this species due to its wide mass distribution (stretching out to m/z 1600) and broad NMR lines, which make it harder to detect at lower concentrations. Among other observed changes is the formation of water immiscible fractions in hydrophilic ILs and water miscible fractions in hydrophobic ILs. The latter is due to anion fragmentation. The import of these observations for use of ILs as extraction solvents in nuclear cycle separations is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA