Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ISME J ; 17(2): 252-262, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36357781

RESUMO

Cyanopodoviruses affect the mortality and population dynamics of the unicellular picocyanobacteria Prochlorococcus and Synechococcus, the dominant primary producers in the oceans. Known cyanopodoviruses all contain the DNA polymerase gene (DNA pol) that is important for phage DNA replication and widely used in field quantification and diversity studies. However, we isolated 18 cyanopodoviruses without identifiable DNA pol. They form a new MPP-C clade that was separated from the existing MPP-A, MPP-B, and P-RSP2 clades. The MPP-C phages have the smallest genomes (37.3-37.9 kb) among sequenced cyanophages, and show longer latent periods than the MPP-B phages. Metagenomic reads of both clades are highly abundant in surface waters, but the MPP-C phages show higher relative abundance in surface waters than in deeper waters, while MPP-B phages have higher relative abundance in deeper waters. Our study reveals that cyanophages with distinct genomic contents and infection kinetics can exhibit different depth profiles in the oceans.


Assuntos
Bacteriófagos , Synechococcus , DNA Polimerase Dirigida por DNA/genética , Oceanos e Mares , Filogenia , Synechococcus/virologia
2.
Microorganisms ; 10(12)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36557758

RESUMO

Sub-seafloor sediment is the largest microbial habitat on Earth. The study of microbes in sub-seafloor sediment is largely limited by the technical challenge of acquiring ambient microbial DNA because of sediment heterogeneity. Changes in the extraction method, even just by one step, can affect the extraction yields for complicated sediment samples. In this work, sub-seafloor sediment samples from the Baltic Sea with high organic carbon content were used to evaluate the influence of different grinding beads on DNA extraction. We found that the grinding beads can affect the DNA extraction from the organic-matter- and biosiliceous-clay-rich samples. A mixture of 0.5-mm and 0.1-mm grinding beads exhibited higher DNA yields and recovered more unique taxa than other bead combinations, such as Stenotrophomonas from Gammaproteobacteria and Leptotrichia from Fusobacteria; therefore, these beads are more suitable than the others for DNA extraction from the samples used in this study. This advantage might be magnified in samples with high biomass. On the contrary, the use of only small beads might lead to underestimation for certain Gram-positive strains. Overall, the discovery of abundant widespread deep biosphere clades in our samples indicated that our optimized DNA extraction method successfully recovered the in situ microbial community.

3.
Front Microbiol ; 12: 583982, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716995

RESUMO

Increasing anthropogenic CO2 emissions in recent decades cause ocean acidification (OA), affecting carbon cycling in oceans by regulating eco-physiological processes of plankton. Heterotrophic bacteria play an important role in carbon cycling in oceans. However, the effect of OA on bacteria in oceans, especially in oligotrophic regions, was not well understood. In our study, the response of bacterial metabolic activity and community composition to OA was assessed by determining bacterial production, respiration, and community composition at the low-pCO2 (400 ppm) and high-pCO2 (800 ppm) treatments over the short term at two oligotrophic stations in the northern South China Sea. Bacterial production decreased significantly by 17.1-37.1 % in response to OA, since bacteria with high nucleic acid content preferentially were repressed by OA, which was less abundant under high-pCO2 treatment. Correspondingly, shifts in bacterial community composition occurred in response to OA, with a high fraction of the small-sized bacteria and high bacterial species diversity in a high-pCO2 scenario at K11. Bacterial respiration responded to OA differently at both stations, most likely attributed to different physiological responses of the bacterial community to OA. OA mitigated bacterial growth efficiency, and consequently, a larger fraction of DOC entering microbial loops was transferred to CO2.

4.
Environ Microbiol ; 23(2): 1038-1052, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33089595

RESUMO

As the most abundant and genetically diverse biological entities, viruses significantly influence ecological, biogeographical and evolutionary processes in the ocean. However, the biogeography of marine viruses and the drivers shaping viral community are unclear. Here, the biogeographic patterns of T4-like viruses and the relative impacts of deterministic (environmental selection) and dispersal (spatial distance) processes were investigated in the northern South China Sea. The dominant viral operational taxonomic units were affiliated with previously defined Marine, Estuary, Lake and Paddy Groups. A clear viral biogeographic pattern was observed along the environmental gradient from the estuary to open sea. Marine Groups I and IV had a wide geographical distribution, whereas Marine Groups II, III and V were abundant in lower-salinity continental or eutrophic environments. A significant distance-decay pattern was noted for the T4-like viral community, especially for those infecting cyanobacteria. Both deterministic and dispersal processes influenced viral community assembly, although environmental selection (e.g. temperature, salinity, bacterial abundance and community, etc.) had a greater impact than spatial distance. Network analysis confirmed the strong association between viral and bacterial community composition, and suggested a diverse ecological relationship (e.g. lysis, co-infection or mutualistic) between and within viruses and their potential bacterial hosts.


Assuntos
Myoviridae/isolamento & purificação , Oceanos e Mares , Água do Mar/virologia , Viroma , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/virologia , China , Estuários , Eutrofização , Myoviridae/classificação , Myoviridae/genética , Filogeografia , Salinidade , Água do Mar/química , Água do Mar/microbiologia
5.
ISME J ; 13(7): 1857-1864, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30877284

RESUMO

Viruses are ubiquitous and cause significant mortality in marine bacterial and archaeal communities. Little is known about the role of viruses in the sub-seafloor biosphere, which hosts a large fraction of all microbes on Earth. We quantified and characterized viruses in sediments from the Baltic Sea. The results show that the Baltic Sea sub-seafloor biosphere harbors highly abundant viruses with densities up to 1.8 × 1010 viruses cm-3. High potential viral production down to 37 meters below seafloor in ca. 6000-years-old sediments and infected prokaryotic cells visible by transmission electron microscopy demonstrate active viral infection. Morphological and molecular data indicate that the highly diverse community of viruses includes both allochthonous input from the overlying seawater and autochthonous production. The detection of cyanophage-like sequences showed that viruses of phototrophic hosts may persist in marine sediments for thousands of years. Our results imply that viruses influence sub-seafloor microbial community dynamics and thereby affect biogeochemical processes in the sub-seafloor biosphere.


Assuntos
Archaea/virologia , Bactérias/virologia , Sedimentos Geológicos/microbiologia , Microbiota , Vírus/isolamento & purificação , Oceanos e Mares , Água do Mar/microbiologia
6.
Front Microbiol ; 8: 897, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28572798

RESUMO

Viruses are an abundant and active component of marine sediments and play a significant role in microbial ecology and biogeochemical cycling at local and global scales. To obtain a better understanding of the ecological characteristics of the viriobenthos, the abundance and morphology of viruses and the diversity and community structure of T4-type phages were systematically investigated in the surface sediments of the subtropical Pearl River Estuary (PRE). Viral abundances ranged from 4.49 × 108 to 11.7 × 108 viruses/g and prokaryotic abundances ranged from 2.63 × 108 to 9.55 × 108 cells/g, and both decreased from freshwater to saltwater. Diverse viral morphotypes, including tailed, spherical, filamentous, and rod-shaped viruses, were observed using transmission electron microscopy. Analysis of the major capsid gene (g23) indicated that the sediment T4-type phages were highly diverse and, similar to the trend in viral abundances, their diversity decreased as the salinity increased. Phylogenetic analysis suggested that most of the g23 operational taxonomic units were affiliated with marine, paddy soil, and lake groups. The T4-type phage communities in freshwater and saltwater sediments showed obvious differences, which were related to changes in the Pearl River discharge. The results of this study demonstrated both allochthonous and autochthonous sources of the viral community in the PRE sediments and the movement of certain T4-type viral groups between the freshwater and saline water biomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA