Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 22(9)2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39330303

RESUMO

We describe five new isolates of two Gambierdiscus species from Bahía de La Paz in the southern Gulf of California. Batch cultures of Gambierdiscus were established for morphological characterization using light microscopy (LM) and scanning electron microscopy (SEM). Pigment and amino acid profiles were also analyzed using high-performance liquid chromatography (HPLC-UV and HPLC-DAD). Finally, toxicity (CTX-like and MTX-like activity) was evaluated using the Artemia salina assay (ARTOX), mouse assay (MBA), marine fish assay (MFA), and fluorescent receptor binding assay (fRBA). These strains were identified as Gambierdiscus cf. caribaeus and Gambierdiscus cf. carpenteri. Toxicity for CTX-like and MTX-like activity was confirmed in all evaluated clones. Seven pigments were detected, with chlorophyll a, pyridine, Chl2, and diadinoxanthin being particularly noteworthy. For the first time, a screening of the amino acid profile of Gambierdiscus from the Pacific Ocean was conducted, which showed 14 amino acids for all strains except histidine, which was only present in G. cf. caribeaus. We report the presence of Gambierdiscus and Fukuyoa species in the Mexican Pacific, where ciguatera fish poisoning (CFP) cases have occurred.


Assuntos
Dinoflagellida , Animais , Camundongos , Dinoflagellida/química , Aminoácidos/análise , Cromatografia Líquida de Alta Pressão , Artemia/efeitos dos fármacos , Ciguatoxinas/toxicidade , Ciguatera , Peixes/parasitologia
2.
Heliyon ; 9(6): e17018, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484312

RESUMO

Harmful algae blooms (HABs) are a conspicuous phenomenon that affect the coastal zone worldwide. Aquaculture industry zones are not excluded from being affected by HAB that cause organism mortality and jeopardize their innocuity due to the contamination by phytotoxins with the concomitant economic losses. Direct ingestion of metabolites from HAB species or organisms contaminated with phycotoxins together with dermal absorption of dissolved metabolites (DM), including toxins, are the two main routes of poisoning. From these poisoning routes, the effect of DM, particularly paralytic shellfish toxins (PST), has been relatively understudied. This intoxication route can be conspicuous and could be involved in many significant mortalities of cultivated marine organisms. In this study, white shrimp juveniles (2.1 g wet weight) of Litopenaeus vannamei were exposed to extracts of 104, 105 and 106 cells/L of the dinoflagellate Gymnodinium catenatum, a PST producer. The experiment ended after 17 h of exposure when shrimps exposed to 106 cells/L extract started to die and the rest of the shrimps, from this and other treatments, did not respond to gentle physical stimulus and their swimming activity was low and erratic. Toxin concentrations were determined using high performance liquid chromatography while qualitative and quantitative histological damages were assessed on the tissues. In general, most toxins were accumulated in the hepatopancreas where more than 90% were found. Other tissues such as intestine, muscle, and gills contained less than 10% of toxins. Compared to the control, the main significative tissue damages were, loss of up to 80% of the nerve cord, 40% of the muscle coverage area, and reduction of the gill lamella width. Also, atrophy in hepatopancreas was observed, manifested by a decrease in the height of B cells, lumen degeneration and thinning of tubules. Some damages were more evident when shrimps were exposed to higher concentrated extracts of G. catenatum, however, not all damages were progressive and proportional to the extract concentration. These data confirm that PST dissolved enter the shrimp, possibly via the gills, and suggest that dissolved metabolites, including PST, may cause tissue damage. Other dissolved metabolites produced by G. catenatum, alone or in synergy, may also be involved. These results also pointed out the importance of dissolved molecules produced for this dinoflagellate and the potential effect on cultured shrimp.

3.
Toxins (Basel) ; 14(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36356010

RESUMO

In September and November 2016, eight marine sampling sites along the coast of the southeastern Gulf of Mexico were monitored for the presence of lipophilic and hydrophilic toxins. Water temperature, salinity, hydrogen potential, dissolved oxygen saturation, inorganic nutrients and phytoplankton abundance were also determined. Two samples filtered through glass fiber filters were used for the extraction and analysis of paralytic shellfish toxins (PSTs) by lateral flow immunochromatography (IFL), HPLC with post-column oxidation and fluorescent detection (FLD) and UHPLC coupled to tandem mass spectrometry (UHPLC-MS/MS). Elevated nutrient contents were associated with the sites of rainwater discharge or those near anthropogenic activities. A predominance of the dinoflagellate Pyrodinium bahamense was found with abundances of up to 104 cells L-1. Identification of the dinoflagellate was corroborated by light and scanning electron microscopy. Samples for toxins were positive by IFL, and the analogs NeoSTX and STX were identified and quantified by HPLC-FLD and UHPLC-MS/MS, with a total PST concentration of 6.5 pg cell-1. This study is the first report that confirms the presence of PSTs in P. bahamense in Mexican waters of the Gulf of Mexico.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Humanos , Toxinas Marinhas/análise , Espectrometria de Massas em Tandem/métodos , Golfo do México , Dinoflagellida/química , Frutos do Mar/análise , Saxitoxina
4.
Toxins (Basel) ; 14(7)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35878239

RESUMO

The harmful microalgae Gymnodinium catenatum is a unique naked dinoflagellate that produces paralytic shellfish poisoning toxins (PSTs). This species is common along the coasts of the Mexican Pacific and is responsible for paralytic shellfish poisoning, which has resulted in notable financial losses in both fisheries and aquaculture. In the Gulf of California, G. catenatum has been related to mass mortality events in fish, shrimp, seabirds, and marine mammals. In this study, the growth, toxin profiles, and toxin content of four G. catenatum strains isolated from Bahía de La Paz (BAPAZ) and Bahía de Mazatlán (BAMAZ) were evaluated with different N:P ratios, keeping the phosphorus concentration constant. All strains were cultivated in semi-continuous cultures (200 mL, 21.0 °C, 120 µmol photon m-2s-1, and a 12:12 h light-dark cycle) with f/2 + Se medium using N:P ratios of: 4:1, 8:1, 16:1, 32:1, and 64:1. Paralytic toxins were analyzed by HPLC with fluorescence detection. Maximum cellular abundance and growth were obtained at an N:P ratio of 64:1 (3188 cells mL-1 and 0.34 div day-1) with the BAMAZ and BAPAZ strains. A total of ten saxitoxin analogs dominated by N-sulfocarbamoyl (60-90 mol%), decarbamoyl (10-20 mol%), and carbamoyl (5-10 mol%) toxins were detected. The different N:P ratios did not cause significant changes in the PST content or toxin profiles of the strains from both bays, although they did affect cell abundance.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Toxinas Biológicas , Animais , Cromatografia Líquida de Alta Pressão , Mamíferos , Saxitoxina/análise
5.
Toxicon ; 199: 68-71, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34087288

RESUMO

Paralytic shellfish toxin (PST) content in the dinoflagellate Gymnodinium catenatum changes with culture age, with a higher toxin concentration in the logarithmic phase that decreases when the culture ages. The gene copy number (GCN) of domains sxtA1 and sxtA4 was higher in the lag and stationary phase, and lag phase, respectively. No relationship was found between the GCN of the domains sxtA4 and sxtA1 with the PST content in G. catenatum.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Toxinas Biológicas , Dinoflagellida/genética , Dosagem de Genes , Humanos , Frutos do Mar
6.
Mar Drugs ; 19(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572171

RESUMO

Most of the shellfish fisheries of Mexico occur in the Gulf of California. In this region, known for its high primary productivity, blooms of diatoms and dinoflagellates are common, occurring mainly during upwelling events. Dinoflagellates that produce lipophilic toxins are present, where some outbreaks related to okadaic acid and dinophisystoxins have been recorded. From January 2015 to November 2017 samples of three species of wild bivalve mollusks were collected monthly in five sites in the southern region of Bahía de La Paz. Pooled tissue extracts were analyzed using LC-MS/MS to detect lipophilic toxins. Eighteen analogs of seven toxin groups, including cyclic imines were identified, fortunately individual toxins did not exceed regulatory levels and also the total toxin concentration for each bivalve species was lower than the maximum permitted level for human consumption. Interspecific differences in toxin number and concentration were observed in three species of bivalves even when the samples were collected at the same site. Okadaic acid was detected in low concentrations, while yessotoxins and gymnodimines had the highest concentrations in bivalve tissues. Although in low quantities, the presence of cyclic imines and other lipophilic toxins in bivalves from the southern Gulf of California was constant.


Assuntos
Bivalves/metabolismo , Toxinas Marinhas/análise , Animais , Compostos Heterocíclicos com 3 Anéis/análise , Hidrocarbonetos Cíclicos/análise , Iminas/análise , Toxinas Marinhas/química , Venenos de Moluscos , Ácido Okadáico/análise , Oxocinas/análise , Solubilidade
7.
Mar Drugs ; 17(1)2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30597874

RESUMO

Historical records of ciguatera in Mexico date back to 1862. This review, including references and epidemiological reports, documents 464 cases during 25 events from 1984 to 2013: 240 (51.72%) in Baja California Sur, 163 (35.12%) in Quintana Roo, 45 (9.69%) in Yucatan, and 16 (3.44%) cases of Mexican tourists intoxicated in Cuba. Carnivorous fish, such as snapper (Lutjanus) and grouper (Epinephelus and Mycteroperca) in the Pacific Ocean, and great barracuda (Sphyraena barracuda) and snapper (Lutjanus) in the Atlantic (Gulf of Mexico and Caribbean Sea), were involved in all cases. In the Mexican Caribbean, a sub-record of ciguatera cases that occurred before 1984 exists. However, the number of intoxications has increased in recent years, and this food poisoning is poorly studied in the region. Current records suggest that ciguatera fish poisoning in humans is the second most prevalent form of seafood poisoning in Mexico, only exceeded by paralytic shellfish poisoning (505 cases, 21 fatalities in the same 34-year period). In this study, the status of ciguatera in Mexico (epidemiological and treatment), and the fish vectors are reviewed. Dinoflagellate species Gambierdiscus, Ostreopsis, and Prorocentrum are related with the reported outbreaks, marine toxins, ecological risk, and the potential toxicological impact.


Assuntos
Ciguatera/epidemiologia , Ciguatoxinas/química , Animais , Peixes , Doenças Transmitidas por Alimentos/epidemiologia , Humanos , México/epidemiologia , Alimentos Marinhos/análise
8.
Artigo em Inglês | MEDLINE | ID: mdl-25565135

RESUMO

The paralytic shellfish toxin (PST) profiles of Gymnodinium catenatum Graham have been reported for several strains from the Pacific coast of Mexico cultured under different laboratory conditions, as well as from natural populations. Up to 15 saxitoxin analogues occurred and the quantity of each toxin depended on the growth phase and culture conditions. Previous analysis of toxin profiles of G. catenatum isolated from Mexico have been based on post-column oxidation liquid chromatography with fluorescence detection (LC-FLD), a method prone to artefacts and non-specificity, leading to misinterpretation of toxin composition. We describe, for the first time, the complete toxin profile for several G. catenatum strains from diverse locations of the Pacific coast of Mexico. The new results confirmed previous reports on the dominance of the less potent sulfocarbamoyl toxins (C1/2); significant differences, however, in the composition (e.g., absence of saxitoxin, gonyautoxin 2/3 and neosaxitoxin) were revealed in our confirmatory analysis. The LC-MS/MS analyses also indicated at least seven putative benzoyl toxin analogues and provided support for their existence. This new toxin profile shows a high similarity (> 80%) to the profiles reported from several regions around the world, suggesting low genetic variability among global populations.


Assuntos
Dinoflagellida/química , Saxitoxina/análogos & derivados , Cromatografia Líquida de Alta Pressão , México , Saxitoxina/análise , Espectrometria de Massas em Tandem
9.
Toxicon ; 90: 199-212, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25151371

RESUMO

The effects of temperature on growth, cell toxicity, toxin content, and profile of paralytic shellfish toxins was determined in eight isolates of Gymnodinium catenatum from several localities along the Pacific Coast of Mexico. The isolates were cultivated in modified f/2 media with Se (10(-8) M), and a reduced concentration of Cu (10(-8) M), under a 12 h:12 h day-night cycle with an irradiance of 150 µE m(-2) s(-1). Isolates were progressively adapted for three generations to each of the temperatures (16, 19, 22, 24, 27, 30, and 33 °C). The cultures were grown in 125 mL Erlenmeyer flasks with 60 mL of media and harvested by filtration in late exponential growth. Toxins were analyzed by HPLC with a post-column oxidation and fluorescent detection (FLD). G. catenatum isolates tolerate temperatures between 16 and 33 °C, with maximum growth rates of 0.32 and 0.39 div day(-1) at 21 °C and 24 °C, respectively; maximum cell densities of 4700 and 5500 cells mL(-1) were obtained at 27 and 21 °C, respectively. No effect of toxicity per cell with temperature was observed, varying between 10.10 and 28.19 pgSXTeq cell(-1). Ten saxitoxin analogues were detected in all isolates, observing changes in the toxin profile with temperature. C1/2 toxins decreased from 80% mol at 16 °C to 20% mol at 33 °C, B1/2 toxins increased from 19% mol at 16 °C to 42% mol at 33 °C, and decarbamoyl toxins were more abundant at 21 °C. These results show that G. catenatum isolates from different regions of the Pacific coast of Mexico have a similar response to temperature and that this parameter can modify growth rate, cell density, and toxin profile of the species, particularly the decarbamoyl and sulfocarbamoyl toxins.


Assuntos
Dinoflagellida/crescimento & desenvolvimento , Dinoflagellida/metabolismo , Toxinas Marinhas/metabolismo , Água do Mar , Temperatura
10.
Mar Drugs ; 8(6): 1935-61, 2010 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20631876

RESUMO

This review presents a detailed analysis of the state of knowledge of studies done in Mexico related to the dinoflagellate Gymnodinium catenatum, a paralytic toxin producer. This species was first reported in the Gulf of California in 1939; since then most studies in Mexico have focused on local blooms and seasonal variations. G. catenatum is most abundant during March and April, usually associated with water temperatures between 18 and 25 °C and an increase in nutrients. In vitro studies of G. catenatum strains from different bays along the Pacific coast of Mexico show that this species can grow in wide ranges of salinities, temperatures, and N:P ratios. Latitudinal differences are observed in the toxicity and toxin profile, but the presence of dcSTX, dcGTX2-3, C1, and C2 are usual components. A common characteristic of the toxin profile found in shellfish, when G. catenatum is present in the coastal environment, is the detection of dcGTX2-3, dcSTX, C1, and C2. Few bioassay studies have reported effects in mollusks and lethal effects in mice, and shrimp; however no adverse effects have been observed in the copepod Acartia clausi. Interestingly, genetic sequencing of D1-D2 LSU rDNA revealed that it differs only in one base pair, compared with strains from other regions.


Assuntos
Dinoflagellida/crescimento & desenvolvimento , Dinoflagellida/fisiologia , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Animais , Contaminação de Alimentos/prevenção & controle , Proliferação Nociva de Algas , Humanos , México/epidemiologia , Oceano Pacífico , Saxitoxina/metabolismo , Saxitoxina/toxicidade , Estações do Ano , Frutos do Mar/análise , Frutos do Mar/microbiologia , Intoxicação por Frutos do Mar/epidemiologia , Intoxicação por Frutos do Mar/prevenção & controle , Especificidade da Espécie , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA