Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
J Contam Hydrol ; 267: 104424, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39260021

RESUMO

The transport of per- and polyfluoroalkyl substances (PFASs) through unsaturated source-zone soils is a critical yet poorly understood aspect of their environmental behavior. To date, most experimental studies have only focused on the equilibrium or non-equilibrium partitioning of PFASs to the air-water interface, or solid-phase based equilibrium or non-equilibrium transport. Currently, there are discrepancies between air-water interfacial partitioning (Kia) results measured using a drainage-based column method (which supports a Langmuir isotherm) when compared to measurements from alternative experimental methods (which support a Freundlich isotherm). We hypothesize that this discrepancy is the result of non-Fickian transport conditions developing during column tests using the drainage method, which reduces the magnitude of the apparent Kia (Kia,app) when estimated using the retardation factor correlation from breakthrough curve experiments. To test the validity of this hypothesis, the drainage method was implemented using PFOS in a sand column and compared with prior data collected using a quasi-saturated column method. Results demonstrate that the apparent Kia was reduced by 3 to 123-fold, resulting in up to 123-fold faster breakthrough of PFOS than predicted with the assumption of equilibrium adsorption to the air-water interface. A novel mobile-immobile model (MIM) of PFAS fate and transport was developed, incorporating a term for anomalously adsorbed solute in the mobile zone to explain highly anomalous data. The modelling results using a modified HYDRUS-1D software show that anomalous air-water interfacial adsorption and/or flowpath channelization are plausible mechanisms for accelerated transport of PFOS and support the application of a Freundlich isotherm for PFOS. Overall, non-Fickian transport mechanisms demonstrate the potential to accelerate PFOS transport through the vadose zone by up to a factor of 123 under specific circumstances. This work demonstrates the assumption of equilibrium adsorption to air-water interfaces, even for homogeneous laboratory experiments, is not necessarily valid.

2.
Environ Sci Technol ; 58(37): 16316-16326, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39226123

RESUMO

Exposure to per- and polyfluoroalkyl substances (PFASs) primarily occurs via consumption of contaminated drinking water and food; however, individuals can also be exposed dermally and via inhalation indoors. This study developed an analytical method for measuring volatile PFASs in silicone wristbands and used them to assess personal exposure in a Midwestern community (n = 87). Paired samples of blood and wristbands were analyzed for PFASs using LC-MS/MS and GC-HRMS to monitor both non-volatile and volatile PFASs. The most frequently detected PFASs in wristbands were: 6:2 diPAP, 6:2 FTOH, MeFOSE and EtFOSE. Females had a 4-fold higher exposure to 6:2 diPAP compared to males and age-dependent differences in exposure to 6:2 FTOH, MeFOSE and EtFOSE were observed. Exposure to MeFOSE and EtFOSE differed based on the average time spent in the home. Frequently detected PFASs in blood were: PFOA, PFOS, PFHxS, PFHpS, and N-MeFOSAA. A strong correlation was found between MeFOSE in the wristbands and N-MeFOSAA in serum (rs = 0.90, p-value <0.001), suggesting exposure to this PFAS was primarily via inhalation and dermal exposure. These results demonstrate that wristbands can provide individual level data on exposure to some polyfluoroalkyl precursors present indoors that reflect serum levels of their suspected biotransformation products.


Assuntos
Silicones , Humanos , Feminino , Masculino , Fluorocarbonos , Monitoramento Ambiental/métodos , Poluição do Ar em Ambientes Fechados/análise , Exposição Ambiental , Adulto
3.
Artigo em Inglês | MEDLINE | ID: mdl-39291694

RESUMO

In urban to peri-urban watersheds such as those surrounding San Francisco Bay, stormwater runoff is a major pathway by which contaminants enter aquatic ecosystems. We evaluated the occurrence of 154 organic contaminants via liquid chromatography coupled to tandem mass spectrometry, including organophosphate esters (OPEs), bisphenols, per- and polyfluoroalkyl substances (PFASs), and a suite of novel urban stormwater tracers (SWCECs; i.e., vehicle-derived chemicals, pesticides, pharmaceuticals/personal care products, benzothiazoles/benzotriazoles). Time-averaged composite sampling focused on storms in highly developed watersheds over four wet seasons, with complementary sampling in less-urban reference watersheds, near-shore estuarine sites, and the open Bay. Of the targeted contaminants, 68 (21 SWCECs, 29 OPEs, 3 bisphenols, 15 PFASs) were detected in ≥10 of 26 urban stormwater samples. Median concentrations exceeded 500 ng L-1 for 1,3-diphenylguanidine, hexa(methoxymethyl)melamine, and caffeine, and exceeded 300 ng L-1 for 2-hydroxy-benzothiazole, 5-methyl-1H-benzotriazole, pentachlorophenol, and tris(2-butoxyethyl) phosphate. Median individual PFAS concentrations were <10 ng L-1, with highest concentrations for PFHxA (180 ng L-1), PFOA (110 ng L-1), and PFOS (81 ng L-1). In six of eight urban stormwater samples analyzed for 6PPD-quinone (a tire rubber-derived transformation product), concentrations exceeded coho salmon acute toxicity thresholds, suggesting (sub)lethal impacts for sensitive species. Observed concentrations were generally significantly higher in highly developed watersheds relative to reference watersheds, but not statistically different in near-shore estuarine sites, suggesting substantial transient exposure potential at stormwater outfalls or creek outflows. Results emphasized the role of stormwater in contaminant transport, the importance of vehicles/roadways as contaminant sources, and the value of monitoring broad multi-analyte contaminant suites to enable comprehensive source and toxicity evaluations.

4.
Water Res ; 258: 121811, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38833811

RESUMO

Urban stormwater runoff is considered a key component of future water supply portfolios for water-stressed cities. Beneficial use of runoff, such as capture for recharge of drinking water aquifers, relies on improved stormwater treatment. Many dissolved constituents, including metals and trace organic contaminants (TrOCs) such as hydrophilic pesticides and poly- and perfluoroalkyl substances (PFASs), are of concern due to their toxicity, persistence, prevalence in stormwater runoff, and poor removal in conventional stormwater control measures. This study explores the operational flow rate limitations of black carbon (BC)-amended engineered media filters for removal of a wide suite of dissolved metals and TrOCs and provides validation for a previously developed predictive TrOC transport model. Column experiments were conducted with face velocities of 40 and 60 cm h-1 to assess Douglas Fir-based biochar and regenerated activated carbon (RAC) filter performance in light of media-contaminant removal kinetic limitations. This study found that increasing the face velocity in BC-amended filters to 40 and 60 cm h-1, which are representative of field conditions, decreased the removal of total suspended solids, turbidity, dissolved hydrophilic TrOCs, and PFASs when expressed as volume treated relative to previous studies conducted at 20 cm h-1. Dissolved metals and hydrophobic TrOCs removal were not substantially affected by the increased flow rates. A predictive 1-d intraparticle pore diffusion-limited sorption model with sorption and effective tortuosity parameters determined previously from experiments conducted at 20 cm h-1 was validated for these higher flow rates. This work provides insights to the kinetic limitations of contaminant removal within biochar and RAC filters and implications for stormwater filter design and operation.


Assuntos
Filtração , Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/química , Cinética , Purificação da Água/métodos , Carvão Vegetal/química , Chuva , Fuligem/química , Carbono/química
5.
Environ Int ; 190: 108844, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38941943

RESUMO

Per- and polyfluoroalkyl substances (PFAS) receive global attention due to their adverse effects on human health and the environment. Fish consumption is a major source of human PFAS exposure. The aim of this work was to address the lack of harmonization within legislations (in the EU and the USA) and highlight the level of PFAS in fish exposed to pollution from diffuse sources in the context of current safety thresholds. A non-exhaustive literature review was carried out to obtain PFAS concentrations in wild fish from the Norwegian mainland, Svalbard, the Netherlands, the USA, as well as sea regions (North Sea, English Channel, Atlantic Ocean), and farmed fish on the Dutch market. Median sum wet weight concentrations of PFOA, PFNA, PFHxS, and PFOS ranged between 0.1 µg kg-1 (farmed fish) and 22 µg kg-1 (Netherlands eel). Most concentrations fell below the EU environmental quality standard (EQSbiota) for PFOS (9.1 µg kg-1) and would not be defined as polluted in the EU. However, using recent tolerable intake or reference dose values in the EU and the USA revealed that even limited fish consumption would lead to exceedance of these thresholds - possibly posing a challenge for risk communication.


Assuntos
Peixes , Fluorocarbonos , Poluentes Químicos da Água , Animais , Humanos , Exposição Dietética/efeitos adversos , Exposição Dietética/análise , Exposição Dietética/normas , Exposição Dietética/estatística & dados numéricos , Monitoramento Ambiental , União Europeia , Fluorocarbonos/efeitos adversos , Fluorocarbonos/análise , Contaminação de Alimentos/análise , Contaminação de Alimentos/estatística & dados numéricos , Países Baixos , Noruega , Medição de Risco , Alimentos Marinhos/efeitos adversos , Alimentos Marinhos/análise , Alimentos Marinhos/normas , Alimentos Marinhos/estatística & dados numéricos , Estados Unidos , Poluentes Químicos da Água/análise
6.
Environ Sci Technol ; 58(22): 9863-9874, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38780413

RESUMO

The long-term leaching of polyfluoroalkyl substances (PFAS) within the vadose zone of an AFFF application site for which the depth to groundwater is approximately 100 m was investigated by characterizing the vertical distribution of PFAS in a high spatial resolution. The great majority (99%) of PFAS mass resides in the upper 3 m of the vadose zone. The depths to which each PFAS migrated, quantified by moment analysis, is an inverse function of molar volume, demonstrating chromatographic separation. The PFAS were operationally categorized into three chain-length groups based on the three general patterns of retention observed. The longest-chain (>∼335 cm3/mol molar volume) PFAS remained within the uppermost section of the core, exhibiting minimal leaching. Conversely, the shortest-chain (<∼220 cm3/mol) PFAS accumulated at the bottom of the interval, which coincides with the onset of a calcic horizon. PFAS with intermediate-chain lengths were distributed along the length of the core, exhibiting differential magnitudes of leaching. The minimal or differential leaching observed for the longest- and intermediate-chain-length PFAS, respectively, demonstrates that retention processes significantly impacted migration. The accumulation of shorter-chain PFAS at the bottom of the core is hypothesized to result from limited deep infiltration and potential-enhanced retention associated with the calcic horizon.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Monitoramento Ambiental
7.
Environ Sci Technol ; 58(23): 10287-10297, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38805641

RESUMO

Though long recognized as synthetic precursors to other poly- and perfluoroalkyl substances (PFASs), most poly- and perfluoroalkyl sulfonyl halides (PASXs) cannot be directly measured and have generally received minimal attention. Inspired by the redox reaction between sulfonyl halide groups and p-toluenethiol in organic chemistry, we developed a novel nontarget analysis strategy for PASXs by intergrating derivatization and specific fragment-based liquid chromatography-high resolution mass spectrometry screening for m/z 82.961 [SO2F-] and m/z 95.934 [S2O2-]. By using this strategy, we discovered 11 PASXs, namely, perfluoroalkyl sulfonyl fluorides (5), polyfluoroalkyl sulfonyl fluorides (2), unsaturated perfluoroalkyl sulfonyl fluoride (1), and perfluoroalkyl sulfonyl chlorides (3) in soil samples collected from an abandoned fluorochemical manufacturing park. These average ∑PASXs concentrations were 1120 µg kg-1 (range: 9.7-9860 µg kg-1), which were very likely to be the key intermediates and undesired byproducts of electrochemical fluorination processes. Spatial variation in the mass ratio of ∑PASXs to ∑PFSAs (range: 0.7-795%) also indicates their different transportation pathways. More importantly, the decline of PASXs and increase of perfluoroalkyl sulfonates (when compared to a prior study at this site) suggest the continued hydrolysis of PASXs and the relatively fast environmental transformation rates in the abandoned fluorochemical park soils. Overall, these findings demonstrated the utility of a novel nontarget analysis strategy, which may change most PASXs from inferred precursors to measured intermediates and further could be adapted for structures, distribution, and transformation studies of PFASXs in other matrices.


Assuntos
Espectrometria de Massas , Poluentes do Solo , Solo , Cromatografia Líquida , Poluentes do Solo/química , Solo/química , Fluorocarbonos/química , Monitoramento Ambiental/métodos
8.
Environ Sci Technol ; 58(20): 8792-8802, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38719742

RESUMO

Per- and polyfluoroalkyl substances (PFASs) from aqueous film forming foams (AFFFs) can hinder bioremediation of co-contaminants such as trichloroethene (TCE) and benzene, toluene, ethylbenzene, and xylene (BTEX). Anaerobic dechlorination can require bioaugmentation of Dehalococcoides, and for BTEX, oxygen is often sparged to stimulate in situ aerobic biodegradation. We tested PFAS inhibition to TCE and BTEX bioremediation by exposing an anaerobic TCE-dechlorinating coculture, an aerobic BTEX-degrading enrichment culture, and an anaerobic toluene-degrading enrichment culture to n-dimethyl perfluorohexane sulfonamido amine (AmPr-FHxSA), perfluorohexane sulfonamide (FHxSA), perfluorohexanesulfonic acid (PFHxS), or nonfluorinated surfactant sodium dodecyl sulfate (SDS). The anaerobic TCE-dechlorinating coculture was resistant to individual PFAS exposures but was inhibited by >1000× diluted AFFF. FHxSA and AmPr-FHxSA inhibited the aerobic BTEX-degrading enrichment. The anaerobic toluene-degrading enrichment was not inhibited by AFFF or individual PFASs. Increases in amino acids in the anaerobic TCE-dechlorinating coculture compared to the control indicated stress response, whereas the BTEX culture exhibited lower concentrations of all amino acids upon exposure to most surfactants (both fluorinated and nonfluorinated) compared to the control. These data suggest the main mechanisms of microbial toxicity are related to interactions with cell membrane synthesis as well as protein stress signaling.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos Aromáticos , Hidrocarbonetos Aromáticos/metabolismo , Tricloroetileno/metabolismo , Sulfonamidas/metabolismo
9.
J Contam Hydrol ; 264: 104359, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38697007

RESUMO

Poly- and perfluoroalkyl substance (PFAS) leaching from unsaturated soils impacted with aqueous film-forming foams (AFFFs) is an environmental challenge that remains difficult to measure and predict. Complicating measurements and predictions of this process is a lack of understanding between the PFAS concentrations measured in a collected environmental unsaturated soil sample, and the PFAS concentrations measured in the corresponding porewater using field-deployed lysimeters. The applicability of bench-scale batch testing to assess this relationship also remains uncertain. In this study, field-deployed porous cup suction lysimeters were used to measure PFAS porewater concentrations in unsaturated soils at 5 AFFF-impacted sites. Field-measured PFAS porewater concentrations were compared to those measured in porewater extracted in the laboratory from collected unsaturated soil cores, and from PFAS concentrations measured in the laboratory using batch soil slurries. Results showed that, despite several years since the last AFFF release at most of the test sites, precursors were abundant in 3 out of the 5 sites. Comparison of field lysimeter results to laboratory testing suggested that the local equilibrium assumption was valid for at least 3 of the sites and conditions of this study. Surprisingly, PFAS accumulation at the air-water interface was orders of magnitude less than expected at two of the test sites, suggesting potential gaps in the understanding of PFAS accumulation at the air-water interface at AFFF-impacted sites. Finally, results herein suggest that bench-scale testing on unsaturated soils can in some cases be used to inform on PFAS in situ porewater concentrations.


Assuntos
Monitoramento Ambiental , Fluorocarbonos , Poluentes do Solo , Solo , Poluentes do Solo/análise , Poluentes do Solo/química , Fluorocarbonos/química , Fluorocarbonos/análise , Solo/química , Poluentes Químicos da Água/análise , Ar/análise , Água/química
10.
Environ Pollut ; 356: 124234, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815892

RESUMO

Per- and poly-fluoroalkyl substances (PFASs) are contaminants of emerging concern, yet the understanding of factors that control their leaching and release from contaminated soils remains limited. This study aimed to investigate the impact of dissolved organic carbon (DOC) on the release of PFASs-specifically, perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), and perfluorooctanoic acid (PFOA)from soils contaminated by aqueous film forming foam (AFFF). Batch aqueous leaching experiments were conducted on AFFF-contaminated soils under alkaline solution conditions (pH 9.5, 10.5, and 12) as it enhances leaching of both PFAS and DOC. Leaching of PFOS was significantly increased under alkaline conditions. Although the leaching of PFAS generally increased with pH, PFOS appeared to be more retained under the very alkaline pH conditions used in this study. At the same solution pH, leaching of PFOS and DOC was less in Ca(OH)2 than in NaOH. The retention of PFOS under these conditions may be attributable to the shielding of the negative charge of the soil components and colloids (e.g., DOC and clay minerals) in the leachates and/or the screening of negative charges on head groups of PFOS due to the high concentration of divalent cations. Solution chemistry affected desorption of PFOS more than PFHxS and PFOA. The study highlights that the influence of DOC on PFAS leaching and transport can be very complex, and depends on leachate chemistry (e.g., pH and cation type), PFAS chemistry, the magnitude of PFAS contamination and factors that influence the solid:liquid partitioning of organic carbon in soil.


Assuntos
Ácidos Alcanossulfônicos , Carbono , Fluorocarbonos , Poluentes do Solo , Solo , Fluorocarbonos/química , Poluentes do Solo/química , Solo/química , Carbono/química , Ácidos Alcanossulfônicos/química , Concentração de Íons de Hidrogênio , Caprilatos/química , Adsorção , Ácidos Sulfônicos
11.
Phys Rev Lett ; 132(16): 164002, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38701461

RESUMO

We report numerical simulations of surface gravity waves forced at small scale and the subsequent inverse cascade of wave action. We combine the spectral approach to simulating weakly nonlinear waves with the capabilities of modern graphics processing units to reach unprecedented scale separation between the forcing and domain scales. The resulting broad inertial range allows for an unambiguous confirmation of the theoretical prediction for the spectrum in the inverse cascade regime, both in terms of spectral index and dependence of the spectral level on the action flux.

13.
Environ Sci Technol ; 58(3): 1690-1699, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38189783

RESUMO

Monitoring contamination from per- and polyfluoroalkyl substances (PFASs) in water systems impacted by aqueous film-forming foams (AFFFs) typically addresses a few known PFAS groups. Given the diversity of PFASs present in AFFFs, current analytical approaches do not comprehensively address the range of PFASs present in these systems. A suspect-screening and nontarget analysis (NTA) approach was developed and applied to identify novel PFASs in groundwater samples contaminated from historic AFFF use. A total of 88 PFASs were identified in both passive samplers and grab samples, and these were dominated by sulfonate derivatives and sulfonamide-derived precursors. Several ultrashort-chain (USC) PFASs (≤C3) were detected, 11 reported for the first time in Australian groundwater. Several transformation products were identified, including perfluoroalkane sulfonamides (FASAs) and perfluoroalkane sulfinates (PFASis). Two new PFASs were reported (((perfluorohexyl)sulfonyl)sulfamic acid; m/z 477.9068 and (E)-1,1,2,2,3,3,4,5,6,7,8,8,8-tridecafluorooct-6-ene-1-sulfonic acid; m/z 424.9482). This study highlights that several PFASs are overlooked using standard target analysis, and therefore, the potential risk from all PFASs present is likely to be underestimated.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Austrália , Água
14.
J Hazard Mater ; 466: 133591, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295728

RESUMO

The widespread use of aqueous film-forming foam (AFFF) for firefighting and firefighter training has led to extensive per- and polyfluoroalkyl substance (PFAS) contamination in the environment. Challenges remain in the analytical determination of PFASs via liquid chromatography-mass spectrometry (LC-MS), particularly when attempting to include ultrashort-chain perfluoroalkyl acids (PFAAs) and longer-chain anionic and zwitterionic PFASs in a single direct injection. In this study, we assessed the performance of three analytical LC columns (C18, JJ, and Acclaim columns) to separate targeted and suspect PFASs in AFFF-impacted water samples collected from five sites. The C18 column failed to retain ultrashort-chain PFAAs while the JJ and Acclaim columns were not suitable for hydrophobic PFASs. Ultrashort-chain PFAAs were detected at three sites and comprised 1.6-18% of the total perfluoroalkyl carboxylic and sulfonic acids. Semi-quantified concentrations of suspect PFASs comprised 0.70-13% of the total PFASs. When attempting to capture the entirety of the PFAS mass in a water sample, the C18 column captured the broadest suite of suspect PFASs, while the JJ column quantified the most total PFAS mass. Results of this study highlight the importance and tradeoffs of LC column choice to comprehensively determine the composition of PFASs and their concentrations in AFFF-impacted water samples.

15.
Environ Toxicol Chem ; 43(2): 245-258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37888867

RESUMO

Only a fraction of the total number of per- and polyfluoroalkyl substances (PFAS) are monitored on a routine basis using targeted chemical analyses. We report on an approach toward identifying bioactive substances in environmental samples using effect-directed analysis by combining toxicity testing, targeted chemical analyses, and suspect screening. PFAS compete with the thyroid hormone thyroxin (T4 ) for binding to its distributor protein transthyretin (TTR). Therefore, a TTR-binding bioassay was used to prioritize unknown features for chemical identification in a PFAS-contaminated sediment sample collected downstream of a factory producing PFAS-coated paper. First, the TTR-binding potencies of 31 analytical PFAS standards were determined. Potencies varied between PFAS depending on carbon chain length, functional group, and, for precursors to perfluoroalkyl sulfonic acids (PFSA), the size or number of atoms in the group(s) attached to the nitrogen. The most potent PFAS were the seven- and eight-carbon PFSA, perfluoroheptane sulfonic acid (PFHpS) and perfluorooctane sulfonic acid (PFOS), and the eight-carbon perfluoroalkyl carboxylic acid (PFCA), perfluorooctanoic acid (PFOA), which showed approximately four- and five-times weaker potencies, respectively, compared with the native ligand T4 . For some of the other PFAS tested, TTR-binding potencies were weak or not observed at all. For the environmental sediment sample, not all of the bioactivity observed in the TTR-binding assay could be assigned to the PFAS quantified using targeted chemical analyses. Therefore, suspect screening was applied to the retention times corresponding to observed TTR binding, and five candidates were identified. Targeted analyses showed that the sediment was dominated by the di-substituted phosphate ester of N-ethyl perfluorooctane sulfonamido ethanol (SAmPAP diester), whereas it was not bioactive in the assay. SAmPAP diester has the potential for (bio)transformation into smaller PFAS, including PFOS. Therefore, when it comes to TTR binding, the hazard associated with this substance is likely through (bio)transformation into more potent transformation products. Environ Toxicol Chem 2024;43:245-258. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Pré-Albumina , Ácidos Alcanossulfônicos/análise , Ácidos Sulfônicos , Fluorocarbonos/toxicidade , Carbono
18.
Environ Sci Technol ; 57(44): 17154-17165, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37856848

RESUMO

While foam fractionation (FF) process has emerged as a promising technology for removal of per- and polyfluoroalkyl substances (PFASs) from contaminated groundwater, management of the resulting foam concentrates with elevated concentrations of PFASs (e.g., >1 g/L) remains a challenge. Here, we applied hydrothermal alkaline treatment (HALT) to two foam concentrates derived from FF field demonstration projects that treated aqueous film-forming foam (AFFF)-impacted groundwater. Results showed >90% degradation and defluorination within 90 min of treatment (350 °C, 1 M NaOH) of all 62 PFASs (including cations, anions, and zwitterions) identified in foam concentrates. Observed rate constants for degradation of individual perfluoroalkyl sulfonates (PFSAs, CnF2n+1-SO3-), the most recalcitrant class of PFASs, in both foam concentrates were similar to values measured previously in other aqueous matrices, indicating that elevated initial PFAS concentrations (e.g., PFHxSinit = 0.55 g/L), dissolved organic carbon (DOC; up to 4.5 g/L), and salt levels (e.g., up to 325 mg/L chloride) do not significantly affect PFAS reaction kinetics. DOC was partially mineralized by treatment, but a fraction (∼15%) was recalcitrant. Spectroscopic characterization revealed molecular features of the HALT-recalcitrant DOC fraction, and nontarget high-resolution mass spectrometry tentatively identified 129 nonfluorinated HALT-recalcitrant molecules. Analysis of process energy requirements shows that treating PFAS-contaminated foam concentrates with HALT would add minimally (<5%) to the overall energy requirements of an integrated FF-HALT treatment train.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Água Subterrânea/química , Água , Cloretos/análise
19.
Environ Sci Technol ; 57(38): 14417-14428, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37699564

RESUMO

Improved stormwater treatment is needed to prevent toxic and mobile contaminant transport into receiving waters and allow beneficial use of stormwater runoff. In particular, safe capture of stormwater runoff to augment drinking water supplies is contingent upon removing dissolved trace organic contaminants (TrOCs) not captured by conventional stormwater control measures. This study builds upon a prior laboratory-based column study investigating biochar and regenerated activated carbon (RAC) amendment for removing hydrophilic trace organic contaminants (HiTrOCs) and poly- and perfluoroalkyl substances (PFASs) from stormwater runoff. A robust contaminant transport model framework incorporating time-dependent flow and influent concentration is developed and validated to predict HiTrOC and PFAS transport in biochar- and RAC-amended stormwater filters. Specifically, parameters fit using a sorption-retarded intraparticle pore diffusion transport model were validated using data further along the depth of the column and compared to equilibrium batch isotherms. The transport model and fitted parameters were then used to estimate the lifetime of a hypothetical stormwater filter in Seal Beach, CA, to be 35 ± 6 years for biochar- and 51 ± 17 years for RAC-amended filters, under ideal conditions with no filter clogging. This work offers insights on the kinetics of HiTrOC and PFAS transport within biochar and RAC filters and on the impact of filter design on contaminant removal performance and longevity.


Assuntos
Caniformia , Fluorocarbonos , Focas Verdadeiras , Purificação da Água , Animais , Chuva , Abastecimento de Água , Fuligem
20.
Environ Sci Technol ; 57(38): 14351-14362, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37696050

RESUMO

This study elucidates per- and polyfluoroalkyl substance (PFAS) fingerprints for specific PFAS source types. Ninety-two samples were collected from aqueous film-forming foam impacted groundwater (AFFF-GW), landfill leachate, biosolids leachate, municipal wastewater treatment plant effluent (WWTP), and wastewater effluent from the pulp and paper and power generation industries. High-resolution mass spectrometry operated with electrospray ionization in negative mode was used to quantify up to 50 target PFASs and screen and semi-quantify up to 2,266 suspect PFASs in each sample. Machine learning classifiers were used to identify PFASs that were diagnostic of each source type. Four C5-C7 perfluoroalkyl acids and one suspect PFAS (trihydrogen-substituted fluoroethernonanoic acid) were diagnostic of AFFF-GW. Two target PFASs (5:3 and 6:2 fluorotelomer carboxylic acids) and two suspect PFASs (4:2 fluorotelomer-thia-acetic acid and N-methylperfluoropropane sulfonamido acetic acid) were diagnostic of landfill leachate. Biosolids leachates were best classified along with landfill leachates and N-methyl and N-ethyl perfluorooctane sulfonamido acetic acid assisted in that classification. WWTP, pulp and paper, and power generation samples contained few target PFASs, but fipronil (a fluorinated insecticide) was diagnostic of WWTP samples. Our results provide PFAS fingerprints for known sources and identify target and suspect PFASs that can be used for source allocation.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Biossólidos , Ácido Acético , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA