Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 368(3): 326-337, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30552296

RESUMO

Ganaxolone (GNX) is the 3ß-methylated synthetic analog of the naturally occurring neurosteroid, allopregnanolone (ALLO). GNX is effective in a broad range of epilepsy and behavioral animal models and is currently in clinical trials designed to assess its anticonvulsant and antidepressant activities. The current studies were designed to broaden the anticonvulsant profile of GNX by evaluating its potential anticonvulsant activities following i.v. administration in treatment-resistant models of status epilepticus (SE), to establish a pharmacokinetic (PK)/pharmacodynamic (PD) relationship, and to compare its PK and anticonvulsant activities to ALLO. In PK studies, GNX had higher exposure levels, a longer half-life, slower clearance, and higher brain penetrance than ALLO. Both GNX and ALLO produced a sedating response as characterized by loss of righting reflex, but neither compound produced a full anesthetic response as animals still responded to painful stimuli. Consistent with their respective PK properties, the sedative effect of GNX was longer than that of ALLO. Unlike other nonanesthetizing anticonvulsant agents indicated for SE, both GNX and ALLO produced anticonvulsant activity in models of pharmacoresistant SE with administration delay times of up to 1 hour after seizure onset. Again, consistent with their respective PK properties, GNX produced a significantly longer anticonvulsant response. These studies show that GNX exhibited improved pharmacological characteristics versus other agents used as treatments for SE and position GNX as a uniquely acting treatment of this indication.


Assuntos
Diazepam/uso terapêutico , Lítio/toxicidade , Pilocarpina/toxicidade , Pregnanolona/análogos & derivados , Pregnanolona/administração & dosagem , Estado Epiléptico/tratamento farmacológico , Administração Intravenosa , Anestésicos/administração & dosagem , Animais , Anticonvulsivantes/uso terapêutico , Epilepsia Resistente a Medicamentos/induzido quimicamente , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Masculino , Agonistas Muscarínicos/toxicidade , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/fisiopatologia
2.
Neuropharmacology ; 62(3): 1413-21, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21110986

RESUMO

T-type calcium channels are important in burst firing and expressed in brain regions implicated in schizophrenia. Therefore, we examined the effects of novel selective T-type calcium channel antagonists in preclinical assays predictive of antipsychotic-like activity. TTA-A2 blocked the psychostimulant effects of amphetamine and MK-801 and decreased conditioned avoidance responding. These effects appeared mechanism based, rather than compound specific, as two structurally dissimilar T-type antagonists also reduced amphetamine-induced psychomotor activity. Importantly, the ability to reduce amphetamine's effects was maintained following 20 days pre-treatment with TTA-A2. To explore the neural substrates mediating the observed behavioral effects, we examined the influence of TTA-A2 on amphetamine-induced c-fos expression as well as basal and stimulant-evoked dopamine and glutamate release in the nucleus accumbens. TTA-A2 decreased amphetamine-induced c-fos expression as well as MK-801-induced, but not basal, glutamate levels in the nucleus accumbens. Basal, amphetamine- and MK-801-induced dopamine efflux was altered. These findings suggest that T-type calcium channel antagonism could represent a novel mechanism for treating schizophrenia.


Assuntos
Antipsicóticos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/metabolismo , Ácido Glutâmico/metabolismo , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Anfetamina/farmacologia , Animais , Benzenoacetamidas/farmacologia , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Masculino , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar
3.
Psychopharmacology (Berl) ; 206(4): 641-51, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19707745

RESUMO

RATIONALE: It was recently reported that administration of the metabotropic glutamate 2 and 3 (mGlu2/3) receptor agonist prodrug LY2140023 to schizophrenic patients decreased positive symptoms. However, at the single, potentially suboptimal, dose that was tested, LY2140023 trended towards being inferior to olanzapine on several indices of efficacy within the Positive and Negative Syndrome Scale. OBJECTIVES: In this study, we examined whether the antipsychotic potential of mGlu2/3 receptor agonism can be enhanced with 5-HT(2A) receptor antagonism. MATERIALS AND METHODS: Specifically, we characterized the effects of co-administering submaximally effective doses of the 5-HT(2A) receptor antagonist M100907 (0.2 mg/kg) and the mGlu2/3 receptor agonist LY379268 (1 mg/kg) on amphetamine-induced and MK-801-induced psychomotor activity in rats, an assay sensitive to antipsychotics. We also determined the effects of co-administering these two compounds on MK-801-induced dopamine and norepinephrine efflux in the nucleus accumbens (NAc). RESULTS: At the submaximally effective doses tested, the effects of M100907 and LY379268 on amphetamine-induced and MK-801-induced psychomotor activity were significantly greater when given together than when given separately. Furthermore, coadministration of these doses of M100907 and LY379268 reduced MK-801-induced dopamine efflux in the NAc. This effect on dopamine release was not observed with the administration of either compound alone, even at higher doses that attenuated MK-801-induced psychomotor activity. CONCLUSIONS: Our results suggest that a single compound having both mGlu2/3 receptor agonist and 5-HT(2A) receptor antagonist activity, or coadministration of two compounds selective for these receptors, could be superior in terms of efficacy and/or reduced side-effect liability relative to an mGlu2/3 receptor agonist alone.


Assuntos
Aminoácidos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Fluorbenzenos/farmacologia , Piperidinas/farmacologia , Antagonistas da Serotonina/farmacologia , Anfetamina/farmacologia , Animais , Antipsicóticos/farmacologia , Maleato de Dizocilpina/farmacologia , Dopamina/metabolismo , Sinergismo Farmacológico , Quimioterapia Combinada , Masculino , Atividade Motora/efeitos dos fármacos , Norepinefrina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Glutamato Metabotrópico/agonistas , Antagonistas do Receptor 5-HT2 de Serotonina
4.
J Pharmacol Exp Ther ; 328(3): 921-30, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19088300

RESUMO

Multiple studies indicate that N-methyl-D-aspartate (NMDA) receptor hypofunction underlies some of the deficits associated with schizophrenia. One approach for improving NMDA receptor function is to enhance occupancy of the glycine modulatory site on the NMDA receptor by increasing the availability of the endogenous coagonists D-serine. Here, we characterized a novel D-amino acid oxidase (DAAO) inhibitor, compound 8 [4H-thieno [3,2-b]pyrrole-5-carboxylic acid] and compared it with D-serine. Compound 8 is a moderately potent inhibitor of human (IC(50), 145 nM) and rat (IC(50), 114 nM) DAAO in vitro. In rats, compound 8 (200 mg/kg) decreased kidney DAAO activity by approximately 96% and brain DAAO activity by approximately 80%. This marked decrease in DAAO activity resulted in a significant (p < 0.001) elevation in both plasma (220% of control) and cerebrospinal fluid (CSF; 175% of control) D-serine concentration. However, compound 8 failed to significantly influence amphetamine-induced psychomotor activity, nucleus accumbens dopamine release, or an MK-801 (dizocilpine maleate)-induced deficit in novel object recognition in rats. In contrast, high doses of D-serine attenuated both amphetamine-induced psychomotor activity and dopamine release and also improved performance in novel object recognition. Behaviorally efficacious doses of D-serine (1280 mg/kg) increased CSF levels of D-serine 40-fold above that achieved by the maximal dose of compound 8. These findings demonstrate that pharmacological inhibition of DAAO significantly increases D-serine concentration in the periphery and central nervous system. However, acute inhibition of DAAO appears not to be sufficient to increase D-serine to concentrations required to produce antipsychotic and cognitive enhancing effects similar to those observed after administration of high doses of exogenous D-serine.


Assuntos
D-Aminoácido Oxidase/farmacologia , Pirróis/farmacologia , Reconhecimento Psicológico/efeitos dos fármacos , Serina/farmacologia , Tiofenos/farmacologia , Idoso , Animais , Maleato de Dizocilpina/farmacologia , Habituação Psicofisiológica , Humanos , Masculino , Modelos Moleculares , Ratos , Ratos Wistar , Esquizofrenia/sangue , Esquizofrenia/líquido cefalorraquidiano , Serina/sangue , Serina/líquido cefalorraquidiano , Tiofenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA