Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 12(9): 2870-80, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11553724

RESUMO

Stu2p is a member of a conserved family of microtubule-binding proteins and an essential protein in yeast. Here, we report the first in vivo analysis of microtubule dynamics in cells lacking a member of this protein family. For these studies, we have used a conditional Stu2p depletion strain expressing alpha-tubulin fused to green fluorescent protein. Depletion of Stu2p leads to fewer and less dynamic cytoplasmic microtubules in both G1 and preanaphase cells. The reduction in cytoplasmic microtubule dynamics is due primarily to decreases in both the catastrophe and rescue frequencies and an increase in the fraction of time microtubules spend pausing. These changes have significant consequences for the cell because they impede the ability of cytoplasmic microtubules to orient the spindle. In addition, recovery of fluorescence after photobleaching indicates that kinetochore microtubules are no longer dynamic in the absence of Stu2p. This deficiency is correlated with a failure to properly align chromosomes at metaphase. Overall, we provide evidence that Stu2p promotes the dynamics of microtubule plus-ends in vivo and that these dynamics are critical for microtubule interactions with kinetochores and cortical sites in the cytoplasm.


Assuntos
Cromossomos Fúngicos/metabolismo , Metáfase/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Saccharomyces cerevisiae , Fuso Acromático/metabolismo , Animais , Western Blotting , Segregação de Cromossomos , Deleção de Genes , Cinetocoros/metabolismo , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Mitose/genética , Fenótipo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/metabolismo
2.
J Cell Biol ; 155(7): 1137-45, 2001 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-11756468

RESUMO

Dam1p, Duo1p, and Dad1p can associate with each other physically and are required for both spindle integrity and kinetochore function in budding yeast. Here, we present our purification from yeast extracts of an approximately 245 kD complex containing Dam1p, Duo1p, and Dad1p and Spc19p, Spc34p, and the previously uncharacterized proteins Dad2p and Ask1p. This Dam1p complex appears to be regulated through the phosphorylation of multiple subunits with at least one phosphorylation event changing during the cell cycle. We also find that purified Dam1p complex binds directly to microtubules in vitro with an affinity of approximately 0.5 microM. To demonstrate that subunits of the Dam1p complex are functionally important for mitosis in vivo, we localized Spc19-green fluorescent protein (GFP), Spc34-GFP, Dad2-GFP, and Ask1-GFP to the mitotic spindle and to kinetochores and generated temperature-sensitive mutants of DAD2 and ASK1. These and other analyses implicate the four newly identified subunits and the Dam1p complex as a whole in outer kinetochore function where they are well positioned to facilitate the association of chromosomes with spindle microtubules.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/fisiologia , Cinetocoros/fisiologia , Proteínas de Neoplasias/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Antígenos de Neoplasias , Proteínas do Citoesqueleto , Imunofluorescência , Genótipo , Proteínas de Fluorescência Verde , Cinetocoros/ultraestrutura , Proteínas Luminescentes/análise , Substâncias Macromoleculares , Espectrometria de Massas , Microtúbulos/metabolismo , Complexos Multiproteicos , Mutação , Proteínas de Neoplasias/fisiologia , Fosforilação , Ligação Proteica , Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/ultraestrutura , Fuso Acromático/ultraestrutura
3.
Nature ; 406(6799): 1013-5, 2000 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-10984058

RESUMO

Coordination of spindle orientation with the axis of cell division is an essential process in all eukaryotes. In addition to ensuring accurate chromosomal segregation, proper spindle orientation also establishes differential cell fates and proper morphogenesis. In both animal and yeast cells, this process is dependent on cytoplasmic microtubules interacting with the cortical actin-based cytoskeleton, although the motive force was unknown. Here we show that yeast Myo2, a myosin V that translocates along polarized actin cables into the bud, orientates the spindle early in the cell cycle by binding and polarizing the microtubule-associated protein Kar9 (refs 7-9). The tail domain of Myo2 that binds Kar9 also interacts with secretory vesicles and vacuolar elements, making it a pivotal component of yeast cell polarization.


Assuntos
Proteínas de Transporte/fisiologia , Cadeias Pesadas de Miosina , Miosina Tipo II , Miosina Tipo V , Miosinas/fisiologia , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Fuso Acromático/fisiologia , Actinas/metabolismo , Proteínas de Transporte/metabolismo , Ciclo Celular , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Miosinas/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomycetales , Técnicas do Sistema de Duplo-Híbrido
4.
J Cell Biol ; 141(5): 1169-79, 1998 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-9606209

RESUMO

We have previously shown that Stu2p is a microtubule-binding protein and a component of the Saccharomyces cerevisiae spindle pole body (SPB). Here we report the identification of Spc72p, a protein that interacts with Stu2p. Stu2p and Spc72p associate in the two-hybrid system and can be coimmunoprecipitated from yeast extracts. Stu2p and Spc72p also interact with themselves, suggesting the possibility of a multimeric Stu2p-Spc72p complex. Spc72p is an essential component of the SPB and is able to associate with a preexisting SPB, indicating that there is a dynamic exchange between soluble and SPB forms of Spc72p. Unlike Stu2p, Spc72p does not bind microtubules in vitro, and was not observed to localize along microtubules in vivo. A temperature-sensitive spc72 mutation causes defects in SPB morphology. In addition, most spc72 mutant cells lack cytoplasmic microtubules; the few cytoplasmic microtubules that are observed are excessively long, and some of these are unattached to the SPB. spc72 cells are able to duplicate and separate their SPBs to form a bipolar spindle, but spindle elongation and chromosome segregation rarely occur. The chromosome segregation block does not arrest the cell cycle; instead, spc72 cells undergo cytokinesis, producing aploid cells and polyploid cells that contain multiple SPBs.


Assuntos
Centrossomo/fisiologia , Proteínas Fúngicas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/fisiologia , Proteínas de Saccharomyces cerevisiae , Núcleo Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Microtúbulos/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento
5.
Genetics ; 147(2): 409-20, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9335582

RESUMO

We have isolated a new conditional-lethal mutation, ndc10-2, in the NDC10/CBF2/CTF14 gene that encodes the 110-kD subunit of the Saccharomyces cerevisiae CBF3 kinetochore complex. At the restrictive temperature of 37 degrees, ndc10-2 cells are able to assemble anaphase spindles, but fail to segregate their DNA, consistent with a defect in kinetochore function. To identify other factors that play a role in kinetochore assembly or function, we isolated both dosage and second site suppressors of the ndc10-2 mutation. These screens identified UBC6 as a dosage suppressor, and mutations in UBC6 and UBC7 as second-site suppressors of ndc10-2 heat sensitivity. Both UBC6 and UBC7 encode ubiquitin-conjugating enzymes that function in ubiquitin-mediated protein degradation. Furthermore, overexpression of a mutant ubiquitin suppresses the ndc10-2 mutation. These results implicate the ubiquitin system in the regulation of ndc10-2 function and suggest a role for the ubiquitin system in kinetochore function.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Genes Supressores , Cinetocoros/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Complexos Ubiquitina-Proteína Ligase , Ubiquitinas/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Clonagem Molecular , Dosagem de Genes , Genes Letais , Temperatura Alta , Ligases/genética , Fenótipo , Ubiquitina-Proteína Ligases
6.
Mol Cell Biol ; 17(10): 6114-21, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9315671

RESUMO

Ribonucleotide reductases catalyze the formation of deoxyribonucleotides by the reduction of the corresponding ribonucleotides. Eukaryotic ribonucleotide reductases are alpha2beta2 tetramers; each of the larger, alpha subunits possesses binding sites for substrate and allosteric effectors, and each of the smaller, beta subunits contains a binuclear iron complex. The iron complex interacts with a specific tyrosine residue to form a tyrosyl free radical which is essential for activity. Previous work has identified two genes in the yeast Saccharomyces cerevisiae, RNR1 and RNR3, that encode alpha subunits and one gene, RNR2, that encodes a beta subunit. Here we report the identification of a second gene from this yeast, RNR4, that encodes a protein with significant similarity to the beta-subunit proteins. The phenotype of rnr4 mutants is consistent with that expected for a defect in ribonucleotide reductase; rnr4 mutants are supersensitive to the ribonucleotide reductase inhibitor hydroxyurea and display an S-phase arrest at their restrictive temperature. rnr4 mutant extracts are deficient in ribonucleotide reductase activity, and this deficiency can be remedied by the addition of exogenous Rnr4p. As is the case for the other RNR genes, RNR4 is induced by agents that damage DNA. However, Rnr4p lacks a number of sequence elements thought to be essential for iron binding, and mutation of the critical tyrosine residue does not affect Rnr4p function. These results suggest that Rnr4p is catalytically inactive but, nonetheless, does play a role in the ribonucleotide reductase complex.


Assuntos
Genes Fúngicos/genética , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleotídeo Redutases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Clonagem Molecular , Temperatura Baixa , Inibidores Enzimáticos/farmacologia , Dosagem de Genes , Regulação Fúngica da Expressão Gênica/fisiologia , Genes Fúngicos/fisiologia , Hidroxiureia/farmacologia , Metanossulfonato de Metila/farmacologia , Dados de Sequência Molecular , Mutagênicos/farmacologia , Mutação , Fenótipo , RNA Fúngico/biossíntese , RNA Mensageiro/biossíntese , Ribonucleosídeo Difosfato Redutase/antagonistas & inibidores , Ribonucleotídeo Redutases/antagonistas & inibidores , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Homologia de Sequência de Aminoácidos
7.
J Cell Biol ; 139(5): 1271-80, 1997 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-9382872

RESUMO

Previously we isolated tub2-423, a cold-sensitive allele of the Saccharomyces cerevisiae gene encoding beta-tubulin that confers a defect in mitotic spindle function. In an attempt to identify additional proteins that are important for spindle function, we screened for suppressors of the cold sensitivity of tub2-423 and obtained two alleles of a novel gene, STU2. STU2 is an essential gene and encodes a protein whose sequence is similar to proteins identified in a variety of organisms. Stu2p localizes primarily to the spindle pole body (SPB) and to a lesser extent along spindle microtubules. Localization to the SPB is not dependent on the presence of microtubules, indicating that Stu2p is an integral component of the SPB. Stu2p also binds microtubules in vitro. We have localized the microtubule-binding domain of Stu2p to a highly basic 100-amino acid region. This region contains two imperfect repeats; both repeats appear to contribute to microtubule binding to similar extents. These results suggest that Stu2p may play a role in the attachment, organization, and/or dynamics of microtubule ends at the SPB.


Assuntos
Centrossomo/química , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fuso Acromático/química , Alelos , Sequência de Aminoácidos , Sítios de Ligação , Centrossomo/metabolismo , Clonagem Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Genes Letais , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/isolamento & purificação , Proteínas Associadas aos Microtúbulos/isolamento & purificação , Proteínas Associadas aos Microtúbulos/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes de Fusão/isolamento & purificação , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Fuso Acromático/metabolismo , Supressão Genética
8.
Proc Natl Acad Sci U S A ; 92(26): 12026-30, 1995 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-8618837

RESUMO

Kinetochores are DNA-protein structures that assemble on centromeric DNA and attach chromosomes to spindle microtubules. Because of their simplicity, the 125-bp centromeres of Saccharomyces cerevisiae are particularly amenable to molecular analysis. Budding yeast centromeres contain three sequence elements of which centromere DNA sequence element III (CDEIII) appears to be particularly important. cis-acting mutations in CDEIII and trans-acting mutations in genes encoding subunits of the CDEIII-binding complex (CBF3) prevent correct chromosome transmission. Using temperature-sensitive mutations in CBF3 subunits, we show a strong correlation between DNA-binding activity measured in vitro and kinetochore activity in vivo. We extend previous findings by Goh and Kilmartin [Goh, P.-Y. & Kilmartin, J.V. (1993) J. Cell Biol. 121, 503-512] to argue that DNA-bound CBF3 may be involved in the operation of a mitotic checkpoint but that functional CBF3 is not required for the assembly of a bipolar spindle.


Assuntos
DNA Fúngico/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Cinetocoros/fisiologia , Proteínas Nucleares , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Centrômero/fisiologia , Cromossomos Fúngicos , Pegada de DNA , DNA Fúngico/química , DNA Fúngico/metabolismo , Substâncias Macromoleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oligodesoxirribonucleotídeos , Proteínas Recombinantes/metabolismo
9.
J Cell Biol ; 127(6 Pt 2): 1973-84, 1994 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-7806575

RESUMO

We have isolated a cold-sensitive allele of TUB2, the sole gene encoding beta-tubulin in S. cerevisiae, that confers a specific defect in spindle microtubule function. At 14 degrees C, tub2-406 cells lack a normal bipolar spindle but do assemble functional cytoplasmic microtubules. In an attempt to identify proteins that are important for spindle assembly, we screened for suppressors of the cold-sensitivity of tub2-406 and obtained four alleles of a novel gene, STU1. Genetic interactions between stu1 alleles and alleles of TUB1 and TUB2 suggest that Stu1p specifically interacts with microtubules. STU1 is essential for growth and disruption of STU1 causes defects in spindle assembly that are similar to those produced by the tub2-406 mutation. The nucleotide sequence of the STU1 gene predicts a protein product of 174 kD with no significant similarity to known proteins. An epitope-tagged Stulp colocalizes with microtubules in the mitotic spindle of yeast. These results demonstrate that Stulp is an essential component of the yeast mitotic spindle.


Assuntos
Proteínas Associadas aos Microtúbulos/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fuso Acromático/química , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Temperatura Baixa , Imunofluorescência , Genes Fúngicos , Proteínas Associadas aos Microtúbulos/imunologia , Proteínas Associadas aos Microtúbulos/isolamento & purificação , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Dados de Sequência Molecular , Mutação , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Análise de Sequência de DNA , Fuso Acromático/fisiologia , Fuso Acromático/ultraestrutura , Supressão Genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
10.
Proc Natl Acad Sci U S A ; 91(19): 9111-5, 1994 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-7916460

RESUMO

We have isolated cold-sensitive mutations in two genes of the yeast Saccharomyces cerevisiae, BIN2 and BIN3, that cause aberrant chromosome segregation in vivo. BIN2 and BIN3 encode essential proteins that are similar to each other and to TCP-1. TCP-1 and TCP-1-like proteins are components of the eukaryotic cytoplasmic chaperonin that facilitates folding of tubulins and actin in vitro. Mutations in BIN2 and BIN3 cause defects in microtubule and actin assembly in vivo and confer supersensitivity to the microtubule-destabilizing drug benomyl. Overexpression of TCP1, BIN2, BIN3, or ANC2, a fourth member of the TCP-1 family in yeast, does not complement mutations in the other genes, indicating that the proteins have distinct functions. However, all double-mutant combinations are inviable; this synthetic lethality suggests that the proteins act in a common process. These results indicate that Bin2p and Bin3p are components of a yeast cytoplasmic chaperonin complex that is required for assembly of microtubules and actin in vivo.


Assuntos
Actinas/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Associadas aos Microtúbulos , Microtúbulos/fisiologia , Proteínas Nucleares/genética , Proteínas/fisiologia , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Divisão Celular , Chaperoninas , Clonagem Molecular , Genes Fúngicos , Dados de Sequência Molecular , Família Multigênica , Mutagênese Insercional , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fuso Acromático/fisiologia , Ubiquitina-Proteína Ligases , Região do Complexo-t do Genoma
11.
Mol Biol Cell ; 5(1): 29-43, 1994 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8186463

RESUMO

A systematic strategy was used to create a synoptic set of mutations that are distributed throughout the single beta-tubulin gene of Saccharomyces cerevisiae. Clusters of charged amino acids were targeted for mutagenesis and converted to alanine to maximize alterations on the protein's surface and minimize alterations that affect protein folding. Of the 55 mutations we constructed, three confer dominant-lethality, 11 confer recessive-lethality, 10 confer cold-sensitivity, one confers heat-sensitivity, and 27 confer altered resistance to benomyl. Only 11 alleles give no discernible phenotype. In spite of the fact that beta-tubulin is a highly conserved protein, three-fourths of the mutations do not destroy the ability of the protein to support the growth of yeast at 30 degrees C. The lethal substitutions are primarily located in three regions of the protein and presumably identify domains most critical for beta-tubulin function. Interestingly, most of the conditional-lethal alleles produce specific defects in spindle assembly at their restrictive temperature; cytoplasmic microtubules are relatively unaffected. The exceptions are two mutants that contain abnormally long cytoplasmic microtubules. Mutants with specific spindle defects were not observed in our previous collection of beta-tubulin mutants and should be valuable in dissecting spindle function.


Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos , Mutagênese Sítio-Dirigida , Saccharomyces cerevisiae/genética , Tubulina (Proteína)/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Benomilo/farmacologia , Temperatura Baixa , Resistência Microbiana a Medicamentos/genética , Genes Dominantes , Genes Letais , Genes Recessivos , Temperatura Alta , Microtúbulos/ultraestrutura , Dados de Sequência Molecular , Fenótipo , Dobramento de Proteína , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/ultraestrutura , Fuso Acromático/ultraestrutura
12.
Genetics ; 135(4): 955-62, 1993 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8307335

RESUMO

rts1-1 was identified as an extragenic suppressor of tub2-104, a cold-sensitive allele of the sole gene encoding beta-tubulin in the yeast, Saccharomyces cerevisiae. In addition, rts1-1 cells are heat sensitive and resistant to the microtubule-destabilizing drug, benomyl. The rts1-1 mutation is a deletion of approximately 5 kb of genomic DNA on chromosome X that includes one open reading frame and three tRNA genes. Dissection of this region shows that heat sensitivity is due to deletion of the open reading frame (HIT1). Suppression and benomyl resistance are caused by deletion of the gene encoding a tRNA(Arg)AGG (HSX1). Northern analysis of rts1-1 cells indicates that HSX1 is the only gene encoding this tRNA. Deletion of HSX1 does not suppress the tub2-104 mutation by misreading at the AGG codons in TUB2. It also does not suppress by interfering with the protein arginylation that targets certain proteins for degradation. These results leave open the prospect that this tRNA(Arg)AGG plays a novel role in the cell.


Assuntos
Deleção de Genes , Microtúbulos/fisiologia , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Alelos , Sequência de Bases , Códon , Primers do DNA , Genes Fúngicos , Dados de Sequência Molecular , Fenótipo , Saccharomyces cerevisiae/ultraestrutura , Supressão Genética
14.
J Cell Biol ; 119(2): 379-88, 1992 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-1400581

RESUMO

tub2-401 is a cold-sensitive allele of TUB2, the sole gene encoding beta-tubulin in the yeast, Saccharomyces cerevisiae. At 18 degrees C, tub2-401 cells are able to assemble spindle microtubules but lack astral microtubules. Under these conditions, movement of the spindle to the bud neck is blocked. However, spindle elongation and chromosome separation are unimpeded and occur entirely within the mother cell. Subsequent cytokinesis produces one cell with two nuclei and one cell without a nucleus. The anucleate daughter can not bud. The binucleate daughter proceeds through another cell cycle to produce a cell with four nuclei and another anucleate cell. With additional time in the cold, the number of nuclei in the nucleated cells continues to increase and the percentage of anucleate cells in the population rises. The results indicate that astral microtubules are needed to position the spindle in the bud neck but are not required for spindle elongation at anaphase B. In addition, cell cycle progression does not depend on the location or orientation of the spindle.


Assuntos
Anáfase/fisiologia , Microtúbulos/fisiologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fuso Acromático/fisiologia , Tubulina (Proteína)/fisiologia , Divisão Celular , Núcleo Celular/fisiologia , Replicação do DNA , Mutação , Tubulina (Proteína)/análise , Tubulina (Proteína)/genética
16.
J Cell Biol ; 106(6): 1997-2010, 1988 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-3290223

RESUMO

We have used in vitro mutagenesis and gene replacement to construct five new cold-sensitive mutations in TUB2, the sole gene encoding beta-tubulin in the yeast Saccharomyces cerevisiae. These and one previously isolated tub2 mutant display diverse phenotypes that have allowed us to define the functions of yeast microtubules in vivo. At the restrictive temperature, all of the tub2 mutations inhibit chromosome segregation and block the mitotic cell cycle. However, different microtubule arrays are present in these arrested cells depending on the tub2 allele. One mutant (tub2-401) contains no detectable microtubules, two (tub2-403 and tub2-405) contain greatly diminished levels of both nuclear and cytoplasmic microtubules, one (tub2-104) contains predominantly nuclear microtubules, one (tub2-402) contains predominantly cytoplasmic microtubules, and one (tub2-404) contains prominent nuclear and cytoplasmic microtubule arrays. Using these mutants we demonstrate here that cytoplasmic microtubules are necessary for nuclear migration during the mitotic cell cycle and for nuclear migration and fusion during conjugation; only those mutants that possess cytoplasmic microtubules are able to perform these functions. We also show that microtubules are not required for secretory vesicle transport in yeast; bud growth and invertase secretion occur in cells which contain no microtubules.


Assuntos
Ciclo Celular , Microtúbulos/fisiologia , Tubulina (Proteína)/genética , Sequência de Aminoácidos , Benomilo/farmacologia , Núcleo Celular/fisiologia , Cromossomos/fisiologia , Temperatura Baixa , Conjugação Genética , Grânulos Citoplasmáticos/fisiologia , Citoesqueleto/fisiologia , Análise Mutacional de DNA , Meiose , Mitose , Dados de Sequência Molecular , Movimento , Recombinação Genética , Saccharomyces cerevisiae , Esporos Fúngicos/fisiologia , Relação Estrutura-Atividade
18.
J Biol Chem ; 259(1): 412-7, 1984 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-6423630

RESUMO

Two complementing mutations in lipid-linked oligosaccharide biosynthesis have been isolated following a [3H]mannose suicide enrichment. Rather than making the wild type precursor oligosaccharide, Glc3man9Glc-NA2-P-P-dolichol, the mutants, alg5-1 and alg6-1, accumulate Man9GlcNAc2-P-P-dolichol as their largest lipid-linked oligosaccharide in vivo and in vitro. When UDP-[3H]Glc was added to microsomal membranes of each mutant, neither could elongate Man9GlcNAc2-P-P-dolichol and only alg6-1 could synthesize dolichol-phosphoglucose. When dolicholphospho[3H]glucose was added to microsomes from alg5-1, alg6-1, or the parental strain, only alg5-1 and the parental strain made glucosylated lipid-linked oligosaccharides. These results indicate that alg5-1 cells are unable to synthesize dolichol phosphoglucose while alg6-1 cells are unable to transfer glucose from dolichol phosphoglucose to the unglucosylated lipid-linked oligosaccharide. We also present evidence that both mutants transfer Man9GlcNAc2 to protein.


Assuntos
Asparagina/metabolismo , Mutação , Oligossacarídeos de Poli-Isoprenil Fosfato/biossíntese , Açúcares de Poli-Isoprenil Fosfato/biossíntese , Saccharomyces cerevisiae/genética , Acetilglucosaminidase/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase , Monossacarídeos de Poli-Isoprenil Fosfato/metabolismo
19.
J Biol Chem ; 259(1): 378-82, 1984 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-6368538

RESUMO

The yeast Saccharomyces cerevisiae temperature-sensitive lethal mutant alg1-1, has been previously shown to lack the activity necessary for the addition of the first mannose residue in the synthesis of lipid-linked precursor oligosaccharide. The gene ALG1 has been cloned by complementation of the temperature-sensitive mutation alg1-1 with a total genomic DNA library. The original DNA fragment isolated was 11,300 base pairs and has been subcloned to a 1,500-base pair fragment which is still capable of complementing alg1-1. The gene ALG1 has been mapped on chromosome II at a distance of 2.1 map units from LYS2. The ALG1 gene product has been shown to catalyze the transfer of a mannosyl residue from GDP-mannose to the lipid-linked acceptor GlcNAc2, yielding Man beta 1-4GlcNAc2-lipid, in lysates from Escherichia coli transformants. This result proves that ALG1 is the structural gene for the first mannosyltransferase in lipid-linked oligosaccharide assembly.


Assuntos
Asparagina , Clonagem Molecular , Escherichia coli/genética , Hexosiltransferases/genética , Manosiltransferases/genética , Saccharomyces cerevisiae/enzimologia , Mapeamento Cromossômico , Genes , Mutação , Plasmídeos , Saccharomyces cerevisiae/genética
20.
Proc Natl Acad Sci U S A ; 80(24): 7466-70, 1983 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-6369318

RESUMO

The synthesis of asparagine-linked oligosaccharides involves the formation of a lipid-linked precursor oligosaccharide that has the composition Glc3Man9GlcNAc2. We have used a [3H]mannose suicide selection to obtain mutants in yeast that are blocked in the synthesis of this precursor oligosaccharide. The alg1 mutant accumulated lipid-linked GlcNAc2, alg2 mutants accumulated Man1-2GlcNAc2, alg3 mutants accumulated Man5GlcNAc2, alg4 mutants accumulated Man1-8GlcNAc2, and alg5 and alg6 mutants accumulated Man9GlcNAc2. Some of these mutants appeared to transfer oligosaccharides other than Glc3Man9GlcNAc2 from the lipid carrier to invertase. These aberrant protein-linked oligosaccharides were processed by the addition of outer chain residues in the alg3, alg5, and alg6 mutants. There was virtually no outer chain addition in the alg2 and alg4 mutants. alg4 was the only mutant that failed to secrete invertase.


Assuntos
Asparagina/genética , Glicoproteínas/genética , Mutação , Oligossacarídeos/genética , Saccharomyces cerevisiae/genética , Alelos , Asparagina/isolamento & purificação , Teste de Complementação Genética , Glicosídeo Hidrolases/genética , Oligossacarídeos/isolamento & purificação , Processamento de Proteína Pós-Traducional , beta-Frutofuranosidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA