Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 10(1): 14926, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913256

RESUMO

Electrically insulating and thermally conductive polymer matrix composites are desirable for industry applications as they improve the reliability of high-performance electronic devices, particularly via heat dissipation in devices loaded with several electronic components. In this study, an aggregated ß-Si3N4 filler with randomly oriented grains was produced via combustion synthesis to improve the thermal conductivity of epoxy composites. The thermal conductivities of the prepared composites were investigated as a function of the filler content, and the values were compared to those of composites loaded with commercial ß-Si3N4 (non-aggregated). Negligible difference was observed in the thermal conductivities of both types of composites when the Si3N4 content was below 40 vol%; however, above 40 vol%, the aggregated ß-Si3N4 filler-loaded composites showed higher thermal conductivities than the commercial ß-Si3N4-loaded composites. The aggregated ß-Si3N4 filler-loaded composites exhibited isotropic thermal conductivities with a maximum value of 4.7 W m-1 K-1 at 53 vol% filler content, which is approximately 2.4 times higher than that of the commercial ß-Si3N4-loaded composites, thereby suggesting that the morphology of the aggregated filler would be more efficient than that of the commonly used non-aggregated filler in enhancing the thermal conductivity of a polymer matrix composite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA