Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Small ; 16(44): e2003361, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33048443

RESUMO

Exploiting spontaneous polarization of ferroelectric materials to achieve high charge separation efficiency is an intriguing but challenging research topic in solar energy conversion. This work shows that loading high work function RuO2 cocatalyst on BiFeO3 (BFO) nanoparticles enhances the intrinsic ferroelectric polarization by efficient screening of charges to RuO2 via RuO2 /BFO heterojunction. This leads to enhancement of the surface photovoltage of RuO2 /BFO single nanoparticles nearly 3 times, the driving force for charge separation and transfer in photocatalytic reactions. Consequently, efficient photocatalytic water oxidation is achieved with quantum efficiency as high as 5.36 % at 560 nm, the highest activity reported so far for ferroelectric materials. This work demonstrates that, unlike low photocurrent density in film-based ferroelectric devices, high photocatalytic activity could be achieved by regulating the ferroelectric spontaneous polarization using appropriate cocatalyst to enhance driving force for efficient separation and transfer of photogenerated charges in particulate ferroelectric semiconductor materials.

3.
J Biochem Mol Toxicol ; 33(7): e22321, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30925002

RESUMO

miR-122 and miR-192 were investigated as indicators of toxic liver injury caused by acetaminophen, but their role in idiosyncratic toxic liver injury remains controversial. So, this work aimed to assess and compare the expressions of miR-122 and miR-192 in two different types of toxic liver injury (intrinsic [acetaminophen] and idiosyncratic [diclofenac]). Forty male adult Wistar albino rats were divided into equal five groups, in which serum liver enzymes; microRNAs (miRNAs) expressions (miR-122 and miR-192) and histopathological findings were studied. The present study showed that (1) miR-122 and miR-192 are good serum biomarkers of toxic liver injury whatever its etiology, as their serum levels exhibited a significantly earlier increase and earlier return to normal baseline levels as compared to serum aminotransferase levels; (2) miR-122 is more specific than miR-192; and (3) both serum levels of miR-122 and miR-192 showed non-significant differences in relation to the type of toxic liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/sangue , MicroRNAs/sangue , Acetaminofen/efeitos adversos , Acetaminofen/farmacologia , Animais , Biomarcadores/sangue , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA