Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 24(64): 17062-17071, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30144168

RESUMO

Singlet fission (SF) is expected to improve photoenergy conversion systems by generating two electrons from one photon. Pentacenes meet the energy-level matching condition between a singlet and two triplet states: [E(S1 )≥2E(T1 )]. However, the molar absorption coefficients of pentacenes in the approximately 400-500 nm region are limited, whereas quantum dots, such as CdSe/ZnS (QD), possess high fluorescence quantum yields and particle-size-dependent fluorescence wavelengths. Thus, a combination of QD (D) and pentacene (A) provides a system of both an enhanced light-harvesting efficiency throughout the solar spectrum and an efficient conversion of the harvested light into the triplet states by SF. Based on these points, m-phenylene-bridged triisopropylsilane (TIPS)-pentacene dimer-functionalized QD (denoted as m-(Pc)2 -QD) was synthesized to examine the sequential photoinduced process from energy transfer to SF. In femtosecond transient absorption measurements, initial energy transfer from QD to pentacene (quantum yield: 87 %) and subsequent SF were efficiently observed. The quantum yield of triplet states of pentacene units (ΦΤ ) based on the excitation of QD attained is 160±6.7 %.

2.
J Phys Chem Lett ; 9(12): 3354-3360, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29847939

RESUMO

Pentacene dimers bridged by a phenylene at ortho and meta positions [denoted as o-(Pc)2 and m-(Pc)2] were synthesized to examine intramolecular orientation-dependent multiexciton dynamics, especially focusing on singlet fission (SF) and recombination from correlated triplet pairs [(TT)]. Absorption and electrochemical measurements indicated strong intramolecular couplings of o-(Pc)2 relative to m-(Pc)2. Femtosecond and nanosecond TA measurements successfully demonstrated efficient SF in both dimers. In contrast, the dissociation process from the (TT) to the individual triplets [(2 × T)] was clearly observed in m-(Pc)2, which is in sharp contrast to a major recombination process in o-(Pc)2. Time-resolved electron spin resonance (TR-ESR) measurements demonstrated that the recombination and dissociation proceed from the quintet state of 5(TT) in m-(Pc)2. The rate constant of the SF was 2 orders of magnitude greater in o-(Pc)2 than that in m-(Pc)2 and was rationalized by enhanced electronic coupling between adjacent HOMOs of the Pc units.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA