Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 25(11): 4616-26, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24285797

RESUMO

Programmed cell death often depends on generation of reactive oxygen species, which can be detoxified by antioxidative enzymes, including catalases. We previously isolated catalase-deficient mutants (cat2) in a screen for resistance to hydroxyurea-induced cell death. Here, we identify an Arabidopsis thaliana hydroxyurea-resistant autophagy mutant, atg2, which also shows reduced sensitivity to cell death triggered by the bacterial effector avrRpm1. To test if catalase deficiency likewise affected both hydroxyurea and avrRpm1 sensitivity, we selected mutants with extremely low catalase activities and showed that they carried mutations in a gene that we named NO CATALASE ACTIVITY1 (NCA1). nca1 mutants showed severely reduced activities of all three catalase isoforms in Arabidopsis, and loss of NCA1 function led to strong suppression of RPM1-triggered cell death. Basal and starvation-induced autophagy appeared normal in the nca1 and cat2 mutants. By contrast, autophagic degradation induced by avrRpm1 challenge was compromised, indicating that catalase acted upstream of immunity-triggered autophagy. The direct interaction of catalase with reactive oxygen species could allow catalase to act as a molecular link between reactive oxygen species and the promotion of autophagy-dependent cell death.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/fisiologia , Autofagia/fisiologia , Catalase/metabolismo , Aminopeptidases/genética , Aminopeptidases/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Catalase/genética , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Hidroxiureia/farmacologia , Mutação , Estresse Oxidativo
2.
J Biol Chem ; 285(28): 21411-5, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20452979

RESUMO

Hydroxyurea (HU) is a well tolerated ribonucleotide reductase inhibitor effective in HIV, sickle cell disease, and blood cancer therapy. Despite a positive initial response, however, most treated cancers eventually progress due to development of HU resistance. Although RNR properties influence HU resistance in cell lines, the mechanisms underlying cancer HU resistance in vivo remain unclear. To address this issue, we screened for HU resistance in the plant Arabidopsis thaliana and identified seventeen unique catalase mutants, thereby establishing that HU toxicity depends on catalase in vivo. We further demonstrated that catalase is a direct HU target by showing that HU acts as a competitive inhibitor of catalase-mediated hydrogen peroxide decomposition. Considering also that catalase can accelerate HU decomposition in vitro and that co-treatment with another catalase inhibitor alleviates HU effects in vivo, our findings suggests that HU could act as a catalase-activated pro-drug. Clinically, we found high catalase activity in circulating cells from untreated chronic myeloid leukemia, offering a possible explanation for the efficacy of HU against this malignancy.


Assuntos
Arabidopsis/metabolismo , Catalase/química , Resistencia a Medicamentos Antineoplásicos , Hidroxiureia/química , Extratos Vegetais/farmacologia , Animais , Antineoplásicos/farmacologia , Química Farmacêutica/métodos , Eritrócitos/efeitos dos fármacos , Eritrócitos/patologia , Concentração Inibidora 50 , Pró-Fármacos/química , Ligação Proteica , Ratos , Ribonucleotídeo Redutases/metabolismo
4.
Bioorg Med Chem ; 17(5): 1938-47, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19232496

RESUMO

In an attempt to improve specific biological functions of cytokinins routinely used in plant micropropagation, 33 6-benzylamino-9-tetrahydropyran-2-ylpurine (THPP) and 9-tetrahydrofuran-2-ylpurine (THFP) derivatives, with variously positioned hydroxy and methoxy functional groups on the benzyl ring, were prepared. The new derivatives were prepared by condensation of 6-chloropurine with 3,4-dihydro-2H-pyran or 2,3-dihydrofuran and then by the condensation of these intermediates with the corresponding benzylamines. The prepared compounds were characterized by elemental analyses, TLC, HPLC, melting point determinations, CI+ MS and (1)H NMR spectroscopy. The cytokinin activity of all the prepared derivatives was assessed in three classical cytokinin bioassays (tobacco callus, wheat leaf senescence and Amaranthus bioassay). The derivatives 6-(3-hydroxybenzylamino)-9-tetrahydropyran-2-ylpurine (3) and 6-(3-hydroxybenzylamino)-9-tetrahydrofuran-2-ylpurine (23) were selected, because of the high affinity of their parent compound meta-topolin (mT, 6-(3-hydroxybenzylamino)purine) to cytokinin receptors, as model compounds for studying their perception by the receptors CRE1/AHK4 and AHK3 in a bacterial assay. Both receptors perceived these two derivatives less well than they perceived the parent compound. Subsequently, the susceptibility of several new derivatives to enzyme degradation by cytokinin oxidase/dehydrogenase was studied. Substitution of tetrahydropyran-2-yl (THP) at the N(9) position decreased the turnover rates of all new derivatives to some extent. To provide a practical perspective, the cytotoxicity of the prepared compounds against human diploid fibroblasts (BJ) and the human cancer cell lines K-562 and MCF-7 was also assayed in vitro. The prepared compounds showed none or marginal cytotoxicity compared to the corresponding N(9)-ribosides. Finally, the pH stability of the two model compounds was assessed in acidic and neutral water solutions (pH 3-7) by high-performance liquid chromatography (HPLC).


Assuntos
Furanos/síntese química , Furanos/toxicidade , Purinas/síntese química , Purinas/toxicidade , Piranos/síntese química , Piranos/toxicidade , Linhagem Celular Tumoral , Citocininas/química , Citocininas/metabolismo , Estabilidade de Medicamentos , Fibroblastos/efeitos dos fármacos , Furanos/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Purinas/química , Piranos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA