Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 505: 125-156, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36240944

RESUMO

Because of different mechanism of electro-signaling in myelinated axons than in dendrites or unmyelinated axons, the role of the myelin needs to be reconsidered upon new premises in distinction to conventional cable model. It occurs that the latter model is inapplicable for so-called saltatory conduction in myelinated axons and the former imagination on the role of the myelin based on the cable model is confusing. We show how the myelin sheath of axons controls the electro-signaling in myelinated neurons upon a wave-type ionic oscillation model of electro-signaling, ion plasmon-polariton model, in close agreement with observations of the saltatory conduction not reachable within traditional cable model approach. This is of particular importance for better understanding of malfunctions of neuron communication due to demyelination diseases and for the strategy of future therapy methods at paralysis and at demyelination syndromes. The new mechanism of signaling in myelinated neurons is also supported by recent advances in recognition of so-called micro-saltatory conduction in C-fibers of pain sensation, also exceeding the range of applicability of the conventional cable model.


Assuntos
Doenças Desmielinizantes , Bainha de Mielina , Humanos , Bainha de Mielina/fisiologia , Axônios/fisiologia , Fibras Nervosas Amielínicas , Condução Nervosa/fisiologia
2.
Materials (Basel) ; 15(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35329705

RESUMO

The application of metallic nanoparticles leads to an increase in the efficiency of solar cells due to the plasmonic effect. We explore various scenarios of the related mechanism in the case of metallized perovskite solar cells, which operate as hybrid chemical cells without p-n junctions, in contrast to conventional cells such as Si, CIGS or thin-layer semiconductor cells. The role of metallic nano-components in perovskite cells is different than in the case of p-n junction solar cells and, in addition, the large forbidden gap and a large effective masses of carriers in the perovskite require different parameters for the metallic nanoparticles than those used in p-n junction cells in order to obtain the increase in efficiency. We discuss the possibility of activating the very poor optical plasmonic photovoltaic effect in perovskite cells via a change in the chemical composition of the perovskite and through special tailoring of metallic admixtures. Here we show that it is possible to increase the absorption of photons (optical plasmonic effect) and simultaneously to decrease the binding energy of excitons (related to the inner electrical plasmonic effect, which is dominant in perovskite cells) in appropriately designed perovskite structures with multishell elongated metallic nanoparticles to achieve an increase in efficiency by means of metallization, which is not accessible in conventional p-n junction cells. We discuss different methods for the metallization of perovskite cells against the background of a review of various attempts to surpass the Shockley-Queisser limit for solar cell efficiency, especially in the case of the perovskite cell family.

3.
Sci Rep ; 12(1): 616, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022491

RESUMO

Using the braid symmetry we demonstrate the derivation of the Laughlin function for the main hierarchy 1/q of FQHE in the lowest Landau level of two-dimensional electron system with a mathematical rigour. This proves that the derivation of Laughlin function unavoidably requires some topological elements and cannot be completed within a local quantum mechanics, i.e., without global topological constraints imposed. The method shows the way for the generalization of this function onto other fractions from the general quantum Hall hierarchy. A generalization of the Laughlin function is here formulated.

4.
Sci Rep ; 11(1): 16108, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373502

RESUMO

Generation of random numbers is a central problem for many applications in the field of information processing, including, e.g., cryptography, in classical and quantum regime, but also mathematical modeling, Monte Carlo methods, gambling and many others. Both, the quality of the randomness and efficiency of the random numbers generation process are crucial for the most of these applications. Software produced pseudorandom bit sequences, though sufficiently quick, do not fulfill required randomness quality demands. Hence, the physical hardware methods are intensively developed to generate truly random number sequences for information processing and electronic security application. In the present paper we discuss the idea of the quantum random number generators. We also present a variety of tests utilized to assess the quality of randomness of generated bit sequences. In the experimental part we apply such tests to assess and compare two quantum random number generators, PQ4000KSI (of company ComScire US) and JUR01 (constructed in Wroclaw University of Science and Technology upon the project of The National Center for Research and Development) as well as a pseudorandom generator from the Mathematica Wolfram package. Finally, we present our new prototype of fully operative miniaturized quantum random generator JUR02 producing a random bit sequence with velocity of 1 Mb/s, which successfully passed standard tests of randomness quality (like NIST and Dieharder tests). We also shortly discuss our former concept of an entanglement-based quantum random number generator protocol with unconditionally secure public randomness verification.

5.
Materials (Basel) ; 14(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361462

RESUMO

The popular model of composite fermions, proposed in order to rationalize FQHE, were insufficient in view of recent experimental observations in graphene monolayer and bilayer, in higher Landau levels in GaAs and in so-called enigmatic FQHE states in the lowest Landau level of GaAs. The specific FQHE hierarchy in double Hall systems of GaAs 2DES and graphene also cannot be explained in the framework of composite fermions. We identify the limits of the usability of the composite fermion model by means of topological methods, which elucidate the phenomenological assumptions in composite fermion structure and admit further development of FQHE understanding. We demonstrate how to generalize these ideas in order to explain experimentally observed FQHE phenomena, going beyond the explanation ability of the conventional composite fermion model.

6.
Materials (Basel) ; 14(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801698

RESUMO

Recent topology classification of 2D electron states induced by different homotopy classes of mappings of the planar Brillouin zone into Bloch space can be supplemented by a homotopy classification of various phases of multi-electron homotopy patterns induced by Coulomb interaction between electrons. The general classification of such type is presented. It explains the topologically protected correlations responsible for integer and fractional Hall effects in 2D multi-electron systems in the presence of perpendicular quantizing magnetic field or Berry field, the latter in topological Chern insulators. The long-range quantum entanglement is essential for homotopy correlated phases in contrast to local binary entanglement for conventional phases with local order parameters. The classification of homotopy long-range correlated phases induced by the Coulomb interaction of electrons has been derived in terms of homotopy invariants and illustrated by experimental observations in GaAs 2DES, graphene monolayer, and bilayer and in Chern topological insulators. The homotopy phases are demonstrated to be topologically protected and immune to the local crystal field, local disorder, and variation of the electron interaction strength. The nonzero interaction between electrons is shown, however, to be essential for the definition of the homotopy invariants, which disappear in gaseous systems.

7.
Nanomaterials (Basel) ; 10(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629942

RESUMO

Correlated phases in Hall systems have topological character. Multilayer configurations of planar electron systems create the opportunity to change topological phases on demand using macroscopic factors, such as vertical voltage. We present an analysis of such phenomena in close relation to recent experiments with multilayer Hall setups including GaAs and graphene multi-layers. The consequences of the blocking or not of the inter-layer electron tunneling in stacked Hall configurations are analyzed and presented in detail. Multilayer Hall systems are thus tunable topological composite nanomaterials, in the case of graphene-stacked systems by both intra- and inter-layer voltage.

8.
Sci Rep ; 10(1): 8101, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32393792

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Sci Rep ; 10(1): 164, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932606

RESUMO

We discuss a simple idealistic quantum entanglement based protocol for quantum random number generation allowing a trusted third party to publicly perform arbitrarily complex tests of randomness without any violation of the secrecy of the generated bit sequences. The protocol diminishes also an average time of the randomness testing (thus enabling arbitrary shortening of this time with increasing number of entangled qubits).

10.
Materials (Basel) ; 12(19)2019 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-31569454

RESUMO

We analyze the microscopic mechanism of the improvement of solar cell efficiency by plasmons in metallic components embedded in active optical medium of a cell. We focus on the explanation of the observed new channel of plasmon photovoltaic effect related to the influence of plasmons onto the internal cell electricity beyond the previously known plasmon mediated absorption of photons. The model situation we analyze is the hybrid chemical perovskite solar cell CH 3 NH 3 PbI 3 - α Cl α with inclusion of core-shell Au/Si0 2 nanoparticles filling pores in the Al 2 O 3 or TiO 2 porous bases at the bottom of perovskite layer, application of which improved the cell efficiency from 10.7 to 11.4% and from 8.4 to 9.5%, respectively, as demonstrated experimentally, mostly due to the reduction by plasmons of the exciton binding energy.

11.
J Phys Condens Matter ; 31(47): 475601, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31394521

RESUMO

Recent experiment reveals the appearance of incompressible fractional quantum Hall effect states in monolayer graphene at [Formula: see text] and [Formula: see text] [Formula: see text], [Formula: see text] [Formula: see text] substituting the compressible Hall metal states at these fillings in the lowest Landau level in a narrow magnetic field window depending on the sample parameters. Simultaneously, none such behavior has been observed either for [Formula: see text] or [Formula: see text] [Formula: see text], [Formula: see text] [Formula: see text]. We propose an explanation of these observations in terms of homotopy of monolayer graphene in consistence with a general theory of correlated states in planar Hall systems.

12.
Sci Rep ; 7(1): 8720, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821795

RESUMO

Recent experimental progress in Hall measurements in bilayer graphene in the so-called open-face configuration of boron nitride encapsulated samples, together with the earlier technique of suspended samples, allows for precise observation of the fractional quantum Hall effect (FQHE) in all 4 subbands of the Lowest Landau level (with n = 0 and n = 1) and in the next LL subbands (with n = 2) in the bilayer system. Many newly observed FQHE features do not agree with a conventional model of composite fermions and reveal a different hierarchy in comparison to monolayer graphene or GaAs 2DEG. We explain the peculiarity of the FQHE hierarchy in the bilayer system in the framework of a topological approach, which includes the composite fermion model as its special case. Inclusion of a topological effect caused by the hopping of electrons between the two sheets in the bilayer system allowed for an explanation of the FQHE hierarchy in the graphene bilayer in satisfactory accordance with the experimental observations.

13.
Sci Technol Adv Mater ; 17(1): 149-165, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877866

RESUMO

The commensurability condition is applied to determine the hierarchy of fractional fillings of Landau levels in monolayer and in bilayer graphene. The filling rates for fractional quantum Hall effect (FQHE) in graphene are found in the first three Landau levels in one-to-one agreement with the experimental data. The presence of even denominator filling fractions in the hierarchy for FQHE in bilayer graphene is explained. Experimentally observed hierarchy of FQHE in the first and second Landau levels in monolayer graphene and in the zeroth Landau level in bilayer graphene is beyond the conventional composite fermion interpretation but fits to the presented nonlocal topology commensurability condition.

14.
Sci Rep ; 5: 14287, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26392385

RESUMO

In this paper, the commensurability conditions, which originated from the unique topology of two-dimensional systems, are applied to determine the quantum Hall effect hierarchy in the case of a monolayer graphene. The fundamental difference in a definition of a typical semiconductor and a monolayer graphene filling factor is pointed out. The calculations are undertaken for all spin-valley branches of two lowest Landau levels, since only they are currently experimentally accessible. The obtained filling factors are compared with the experimental data and a very good agreement is achieved. The work also introduces a concept of the single-loop fractional quantum Hall effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA