Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1720(1-2): 14-21, 2005 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-16376294

RESUMO

Secretory A(2) phospholipases (sPLA(2)) hydrolyze surfactant phospholipids cause surfactant dysfunction and are elevated in lung inflammation. Phospholipase-mediated surfactant hydrolysis may disrupt surfactant function by generation of lysophospholipids and free fatty acids and/or depletion of native phospholipids. In this study, we quantitatively assessed multiple mechanisms of sPLA(2)-mediated surfactant dysfunction using non-enzymatic models including supplementation of surfactants with exogenous lysophospholipids and free fatty acids. Our data demonstrated lysophospholipids at levels >or=10 mol% of total phospholipid (i.e., >or=10% hydrolysis) led to a significant increase in minimum surface tension and increased the time to achieve a normal minimum surface tension. Lysophospholipid inhibition of surfactant function was independent of the lysophospholipid head group or total phospholipid concentration. Free fatty acids (palmitic acid, oleic acid) alone had little effect on minimum surface tension, but did increase the maximum surface tension and the time to achieve normal minimum surface tension. The combined effect of equimolar free fatty acids and lysophospholipids was not different from the effect of lysophospholipids alone for any measurement of surfactant function. Surfactant proteins did not change the percent lysophospholipids required to increase minimum surface tension. As a mechanism that causes surfactant dysfunction, depletion of native phospholipids required much greater change (equivalent to >80% hydrolysis) than generation of lysophospholipids. In summary, generation of lysophospholipids is the principal mechanism of phospholipase-mediated surfactant injury in our non-enzymatic models. These models and findings will assist in understanding more complex in vitro and in vivo studies of phospholipase-mediated surfactant injury.


Assuntos
Ácidos Graxos/farmacologia , Lisofosfolipídeos/farmacologia , Fosfolipases A/metabolismo , Surfactantes Pulmonares/antagonistas & inibidores , Animais , Modelos Químicos , Fosfolipases A2 , Surfactantes Pulmonares/química , Surfactantes Pulmonares/metabolismo , Tensão Superficial/efeitos dos fármacos , Suínos
2.
J Endotoxin Res ; 9(1): 39-44, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12691617

RESUMO

Gene- and signal-specific adaptation/tolerance of blood leukocytes to lipopolysaccharide endotoxin (LPS) occurs during human and animal septicemia. These phenotypes can be modeled in vitro. LPS-TLR4-adapted human THP-1 promonocytic cells cross-adapt to lipoteichoic acid (LTA)-TLR2-induced IL-1beta/TNF-alpha production, suggesting disruption of a common intracellular signaling event(s). A plausible explanation for homologous adaptation of TLR4 with heterologous adaptation of TLR2 is a persistent inactivation and degradation of IRAK1 following TLR4 activation. LTA stimulation of TLR2 also produces homologous adaptation of TLR2 with inactivation of IRAK1, but there is no detectable degradation of IRAK1. Strikingly, such LTA-adapted cells still respond to LPS stimulation of TLR4 with rapid activation and degradation of IRAK1, and robust IL-1beta/TNF-alpha production. Moreover, cells adapted to either LTA- or LPS-production of IL-1beta/TNF-alpha normally produce soluble interleukin 1 receptor antagonist (sIL-1Ra) anti-inflammatory protein when stimulated by either agonist. We conclude that: (i) disruption of a unique TLR2 signaling component upstream of IRAK1, but downstream of TLR2 sensing, induces homologous adaptation to LTA; (ii) disruption of IRAK1 may induce homologous adaptation of TLR4 to LPS and cross-adaptation of TLR2 to LTA; and (iii) TLR2/TLR4 signaling events that control sIL-1Ra translation do not adapt to LPS or LTA, indicating that TLR4 and TLR2 can still function. We present a hypothetical model of adaptation based on a signalsome, with IRAK1 evolving after IRAK4 to regulate TLR4 adaptation tightly.


Assuntos
Adaptação Biológica/fisiologia , Regulação da Expressão Gênica/fisiologia , Leucócitos Mononucleares/fisiologia , Glicoproteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Humanos , Tolerância Imunológica , Interleucina-1/genética , Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1 , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/genética , Modelos Biológicos , Proteínas Quinases/metabolismo , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/genética , Sepse/imunologia , Transdução de Sinais , Ácidos Teicoicos/farmacologia , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Receptores Toll-Like , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
3.
J Immunol ; 168(12): 6136-41, 2002 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12055225

RESUMO

Human Toll-like receptor (TLR) 4 and TLR2 receptors recognize LPS or lipoteichoic acid (LTA), respectively. Prolonged exposure of human macrophages/monocytes to bacterial LPS induces a state of adaptation/tolerance to subsequent LPS challenge. Inflammatory gene expressions such as IL-1beta and TNF-alpha are selectively repressed, while certain anti-inflammatory genes such as secretory IL-1R antagonist are still induced in LPS-adapted/tolerant cells. In this report, we demonstrate that LPS-tolerized human promonocytic THP-1 cells develop cross-tolerance and no longer respond to LTA-induced IL-1beta/TNF-alpha production, indicating that disruption of common intracellular signaling is responsible for the decreased IL-1beta/TNF-alpha production. We observe that down-regulation of IL-1R-associated kinase (IRAK) protein level and kinase activity closely correlates with the development of cross-tolerance. IRAK protein levels and kinase activities in LPS-tolerized cells remain low and hyporesponsive to subsequent LPS or LTA challenges. We also demonstrate that THP-1 cells with prolonged LTA treatment develop LTA tolerance and do not express IL-1beta/TNF-alpha upon further LTA challenge. Strikingly, cells tolerized with LTA are only refractory to subsequent LTA challenge and can still respond to LPS stimulation. Correspondingly, stimulation of TLR2 by LTA, although activating IRAK, does not cause IRAK degradation. IRAK from LTA-tolerized cells can be subsequently activated and degraded by further LPS challenge, but not LTA treatment. Our studies reveal that LTA-induced tolerance is distinct compared with that of LPS tolerance, and is likely due to disruption of unique TLR2 signaling components upstream of MyD88/IRAK.


Assuntos
Tolerância Imunológica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Proteínas Quinases/metabolismo , Receptores de Interleucina-1/metabolismo , Ácidos Teicoicos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/imunologia , Humanos , Proteína Antagonista do Receptor de Interleucina 1 , Quinases Associadas a Receptores de Interleucina-1 , Receptores de Interleucina-1/antagonistas & inibidores , Sialoglicoproteínas/biossíntese , Sialoglicoproteínas/metabolismo , Células Tumorais Cultivadas/enzimologia , Células Tumorais Cultivadas/imunologia , Células Tumorais Cultivadas/metabolismo
4.
J Immunol ; 168(8): 3910-4, 2002 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11937546

RESUMO

IL-1R-associated kinase (IRAK) plays a pivotal role in IL-1R/Toll-like receptor (TLR)-mediated signaling and NF-kappaB activation. IRAK from leukocytes undergoes rapid activation and inactivation/degradation following IL-1 or LPS stimulation. The rapid degradation of IRAK may serve as a negative feedback mechanism of down-regulating IL-1R/TLR-mediated signaling and cytokine gene transcription. Although IL-1/IL-1R-triggered IRAK degradation has been studied in detail, the mechanism of LPS-induced IRAK activation and degradation is not clearly defined. In this study, we demonstrate that the IRAK N-terminal 186-aa region is required for LPS-induced degradation. The N-terminally truncated IRAK protein expressed in human monocytic THP-1 cells remains stable upon LPS challenge. In comparison, IRAK as well as the IRAK mutant with C-terminal truncation undergo degradation with LPS stimulation. We demonstrate that pretreatment with protein kinase C inhibitor calphostin inhibits LPS-induced IRAK degradation. Furthermore, we observe coimmunoprecipitation of endogenous IRAK and protein kinase C-zeta protein. We show that functional TLR4 is required for LPS-mediated IRAK degradation. IRAK protein in the murine GG2EE cells harboring a mutated TLR4 gene does not undergo degradation upon LPS treatment. In sharp contrast, we observe that the IRAK homolog, IRAK2, does not undergo degradation upon prolonged LPS treatment, suggesting complex regulation of the innate immunity network upon microbial challenge.


Assuntos
Proteínas de Drosophila , Lipopolissacarídeos/farmacologia , Proteínas Quinases/metabolismo , Receptores de Interleucina-1/metabolismo , Animais , Linhagem Celular , Estabilidade Enzimática/imunologia , Humanos , Quinases Associadas a Receptores de Interleucina-1 , Isoenzimas/fisiologia , Glicoproteínas de Membrana/fisiologia , Camundongos , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fosforilação , Proteína Quinase C/fisiologia , Proteínas Quinases/biossíntese , Proteínas Quinases/genética , Receptores de Superfície Celular/fisiologia , Receptores de Interleucina-1/biossíntese , Receptores de Interleucina-1/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Receptor 4 Toll-Like , Receptores Toll-Like , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA