Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 62(17): F1-F7, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37707124

RESUMO

Inverse synthetic aperture radar (ISAR) provides a solution to increase the radar angular resolution by observing a moving target over time. The high-resolution ISAR image should undergo a segmentation step to get the target's point cloud data, which is then used for classification purposes. Existing segmentation algorithms seek an optimal threshold in an iterative manner, which adds to the complexity of ISAR and results in an increase in the processing time. In this paper, we take advantage of the distribution of the ISAR image intensity, which is based on the Rayleigh distribution, and obtain an explicit relationship for the optimal segmentation threshold. The proposed segmentation algorithm alleviates the requirement for iterative optimization and its efficiency is shown using both simulated and experimental ISAR images.

2.
Sensors (Basel) ; 22(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35062606

RESUMO

In precision agriculture (PA) practices, the accurate delineation of management zones (MZs), with each zone having similar characteristics, is essential for map-based variable rate application of farming inputs. However, there is no consensus on an optimal clustering algorithm and the input data format. In this paper, we evaluated the performances of five clustering algorithms including k-means, fuzzy C-means (FCM), hierarchical, mean shift, and density-based spatial clustering of applications with noise (DBSCAN) in different scenarios and assessed the impacts of input data format and feature selection on MZ delineation quality. We used key soil fertility attributes (moisture content (MC), organic carbon (OC), calcium (Ca), cation exchange capacity (CEC), exchangeable potassium (K), magnesium (Mg), sodium (Na), exchangeable phosphorous (P), and pH) collected with an online visible and near-infrared (vis-NIR) spectrometer along with Sentinel2 and yield data of five commercial fields in Belgium. We demonstrated that k-means is the optimal clustering method for MZ delineation, and the input data should be normalized (range normalization). Feature selection was also shown to be positively effective. Furthermore, we proposed an algorithm based on DBSCAN for smoothing the MZs maps to allow smooth actuating during variable rate application by agricultural machinery. Finally, the whole process of MZ delineation was integrated in a clustering and smoothing pipeline (CaSP), which automatically performs the following steps sequentially: (1) range normalization, (2) feature selection based on cross-correlation analysis, (3) k-means clustering, and (4) smoothing. It is recommended to adopt the developed platform for automatic MZ delineation for variable rate applications of farming inputs.


Assuntos
Tecnologia de Sensoriamento Remoto , Solo , Algoritmos , Análise por Conglomerados , Análise Espacial
3.
Sensors (Basel) ; 21(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383627

RESUMO

Visible and near infrared (vis-NIR) diffuse reflectance and X-ray fluorescence (XRF) sensors are promising proximal soil sensing (PSS) tools for predicting soil key fertility attributes. This work aimed at assessing the performance of the individual and combined use of vis-NIR and XRF sensors to predict clay, organic matter (OM), cation exchange capacity (CEC), pH, base saturation (V), and extractable (ex-) nutrients (ex-P, ex-K, ex-Ca, and ex-Mg) in Brazilian tropical soils. Individual models using the data of each sensor alone were calibrated using multiple linear regressions (MLR) for the XRF data, and partial least squares (PLS) regressions for the vis-NIR data. Six data fusion approaches were evaluated and compared against individual models using relative improvement (RI). The data fusion approaches included (i) two spectra fusion approaches, which simply combined the data of both sensors in a merged dataset, followed by support vector machine (SF-SVM) and PLS (SF-PLS) regression analysis; (ii) two model averaging approaches using the Granger and Ramanathan (GR) method; and (iii) two data fusion methods based on least squares (LS) modeling. For the GR and LS approaches, two different combinations of inputs were used for MLR. The GR2 and LS2 used the prediction of individual sensors, whereas the GR3 and LS3 used the individual sensors prediction plus the SF-PLS prediction. The individual vis-NIR models showed the best results for clay and OM prediction (RPD ≥ 2.61), while the individual XRF models exhibited the best predictive models for CEC, V, ex-K, ex-Ca, and ex-Mg (RPD ≥ 2.57). For eight out of nine soil attributes studied (clay, CEC, pH, V, ex-P, ex-K, ex-Ca, and ex-Mg), the combined use of vis-NIR and XRF sensors using at least one of the six data fusion approaches improved the accuracy of the predictions (with RI ranging from 1 to 21%). In general, the LS3 model averaging approach stood out as the data fusion method with the greatest number of attributes with positive RI (six attributes; namely, clay, CEC, pH, ex-P, ex-K, and ex-Mg). Meanwhile, no single approach was capable of exploiting the synergism between sensors for all attributes of interest, suggesting that the selection of the best data fusion approach should be attribute-specific. The results presented in this work evidenced the complementarity of XRF and vis-NIR sensors to predict fertility attributes in tropical soils, and encourage further research to find a generalized method of data fusion of both sensors data.

4.
Sensors (Basel) ; 19(3)2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30717371

RESUMO

Source localization and target tracking are among the most challenging problems in wireless sensor networks (WSN). Most of the state-of-the-art solutions are complicated and do not meet the processing and memory limitations of the existing low-cost sensor nodes. In this paper, we propose computationally-cheap solutions based on the support vector machine (SVM) and twin SVM (TWSVM) learning algorithms in which network nodes firstly detect the desired signal. Then, the network is trained to specify the nodes in the vicinity of the source (or target); hence, the region of event is detected. Finally, the centroid of the event region is considered as an estimation of the source location. The efficiency of the proposed methods is shown by simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA