Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
1.
Gels ; 10(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920954

RESUMO

Wound healing involves a sophisticated biological process that relies on ideal conditions to advance through various stages of repair. Modern wound dressings are designed to imitate the natural surroundings around cells and offer properties such as moisture regulation, strength, and antimicrobial defense to boost healing. A recent research project unveiled a new type of gelatin (Gel)/dextran (Dex) hydrogels, linked through Diels-Alder (D-A) reactions, loaded with silver nanoparticles (Ag-NPs) for cutting-edge wound treatment. Gel and Dex were chemically modified to form the hydrogels via the D-A reaction. The hydrogels were enriched with Ag-NPs at varying levels. Thorough analyses of the hydrogels using methods like NMR, FT-IR, and SEM were carried out to assess their structure and nanoparticle integration. Rheological tests displayed that the hydrogels had favorable mechanical attributes, particularly when Ag-NPs were included. The hydrogels demonstrated controlled swelling, responsiveness to pH changes, and were non-toxic. Testing against E. coli showcased the strong antibacterial activity of the nanocomposite hydrogels in a concentration-dependent manner. This investigation showcased the promise of these bioactive nanocomposite hydrogels in promoting speedy wound healing by maintaining a moist environment, offering an antimicrobial shield, and ensuring mechanical support at the wound site.

2.
Adv Ther ; 41(8): 3119-3137, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880822

RESUMO

INTRODUCTION: Several studies have reported that pravastatin can mitigate the progression of kidney disease, but limited evidence exists regarding its effects on kidney function in Asian patients. This multicenter prospective observational study aimed to assess the effect of pravastatin on kidney function in Korean patients with dyslipidemia and type 2 diabetes mellitus (T2DM) in clinical practice. METHODS: This 48-week prospective multicenter study included 2604 of 2997 eligible patients with dyslipidemia and T2DM who had available estimated glomerular filtration rate (eGFR) measurements. The primary endpoint was eGFR percent change at week 24 from baseline. We also assessed secondary endpoints, which included percent changes in eGFR at weeks 12 and 48 from baseline, as well as changes in eGFR, metabolic profiles (lipid and glycemic levels) at 12, 24, and 48 weeks from baseline, and safety. RESULTS: We noted a significant improvement in eGFR, with mean percent changes of 2.5%, 2.5%, and 3.0% at 12, 24, and 48 weeks, respectively (all adjusted p < 0.05). The eGFR percent changes significantly increased in subgroups with baseline eGFR 30-90 mL/min/1.73 m2, glycated hemoglobin (HbA1c) ≥ 7 at baseline, no hypertension history, T2DM duration > 5 years, or previous statin therapy. Lipid profiles were improved and remained stable throughout the study, and interestingly, fasting glucose and HbA1c were improved at 24 weeks. CONCLUSION: Our findings suggest that pravastatin may have potential benefits for improving eGFR in Korean patients with dyslipidemia and T2DM. This could make it a preferable treatment option for patients with reduced kidney function. TRIAL REGISTRATION NUMBER: NCT05107063 submitted October 27, 2021.


Assuntos
Diabetes Mellitus Tipo 2 , Dislipidemias , Taxa de Filtração Glomerular , Inibidores de Hidroximetilglutaril-CoA Redutases , Pravastatina , Humanos , Pravastatina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Dislipidemias/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Taxa de Filtração Glomerular/efeitos dos fármacos , Estudos Prospectivos , Idoso , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , República da Coreia , Adulto , Rim/efeitos dos fármacos , Rim/fisiopatologia
3.
Materials (Basel) ; 17(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38793505

RESUMO

This comprehensive review delves into the world of hyaluronic acid (HA) hydrogels, exploring their creation, characteristics, research methodologies, and uses. HA hydrogels stand out among natural polysaccharides due to their distinct features. Their exceptional biocompatibility makes them a top choice for diverse biomedical purposes, with a great ability to coexist harmoniously with living cells and tissues. Furthermore, their biodegradability permits their gradual breakdown by bodily enzymes, enabling the creation of temporary frameworks for tissue engineering endeavors. Additionally, since HA is a vital component of the extracellular matrix (ECM) in numerous tissues, HA hydrogels can replicate the ECM's structure and functions. This mimicry is pivotal in tissue engineering applications by providing an ideal setting for cellular growth and maturation. Various cross-linking techniques like chemical, physical, enzymatic, and hybrid methods impact the mechanical strength, swelling capacity, and degradation speed of the hydrogels. Assessment tools such as rheological analysis, electron microscopy, spectroscopy, swelling tests, and degradation studies are employed to examine their attributes. HA-based hydrogels feature prominently in tissue engineering, drug distribution, wound recovery, ophthalmology, and cartilage mending. Crafting HA hydrogels enables the production of biomaterials with sought-after qualities, offering avenues for advancements in the realm of biomedicine.

4.
Ann Hepatobiliary Pancreat Surg ; 28(3): 388-392, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556878

RESUMO

In liver transplantation, the primary concern is to ensure an adequate future liver remnant (FLR) volume for the donor, while selecting a graft of sufficient size for the recipient. The living donor-resection and partial liver segment 2-3 transplantation with delayed total hepatectomy (LD-RAPID) procedure offers a potential solution to expand the donor pool for living donor liver transplantation (LDLT). We report the first case involving a cirrhotic patient with autoimmune hepatitis and hepatocellular carcinoma, who underwent left lobe LDLT using the LD-RAPID procedure. The living liver donor (LLD) underwent a laparoscopic left hepatectomy, including middle hepatic vein. The resection on the recipient side was an extended left hepatectomy, including the middle hepatic vein orifice and caudate lobe. At postoperative day 7, a computed tomography scan showed hypertrophy of the left graft from 320 g to 465 mL (i.e., a 45.3% increase in graft volume body weight ratio from 0.60% to 0.77%). After a 7-day interval, the diseased right lobe was removed in the second stage surgery. The LD-RAPID procedure using left lobe graft allows for the use of a small liver graft or small FLR volume in LLD in LDLT, which expands the donor pool to minimize the risk to LLD by enabling the donation of a smaller liver portion.

5.
Adv Biol (Weinh) ; 8(6): e2300375, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38548666

RESUMO

In anti-cancer metastasis treatment, precise drug delivery to cancer cells remains a challenge. Innovative nanocomposites are developed to tackle these issues effectively. The approach involves the creation of manganese oxide (Mn3O4) nanoparticles (NPs) and their functionalization using trisodium citrate to yield functionalized Mn3O4 NPs (F-Mn3O4 NPs), with enhanced water solubility, stability, and biocompatibility. Subsequently, the chemotherapeutic drug doxorubicin (DOX) is encapsulated with Mn3O4 NPs, resulting in DOX/Mn3O4 NPs. To achieve cell-specific targeting, These NPs are coated with HeLa cell membranes (HCM), forming HCM/DOX/Mn3O4. For further refinement, a transferrin (Tf) receptor is integrated with cracked HCM to create Tf-HCM/DOX/Mn3O4 nanocomposites (NC) with specific cell membrane targeting capabilities. The resulting Tf-HCM/DOX/Mn3O4 NC exhibits excellent drug encapsulation efficiency (97.5%) and displays triggered drug release when exposed to NIR laser irradiation in the tumor's environment (pH 5.0 and 6.5). Furthermore, these nanocomposites show resistance to macrophage uptake and demonstrate homotypic cancer cell targeting specificity, even in the presence of other tumor cells. In vitro toxicity tests show that Tf-HCM/DOX/Mn3O4 NC achieves significant anticancer activity against HeLa and BT20 cancer cells, with percentages of 76.46% and 71.36%, respectively. These results indicate the potential of Tf-HCM/DOX/Mn3O4 NC as an effective nanoplatform for chemo-photothermal therapy.


Assuntos
Membrana Celular , Doxorrubicina , Sistemas de Liberação de Medicamentos , Compostos de Manganês , Nanocompostos , Óxidos , Humanos , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Nanocompostos/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Células HeLa , Óxidos/química , Óxidos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Liberação Controlada de Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia
6.
ACS Appl Mater Interfaces ; 16(12): 15322-15335, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38470564

RESUMO

Chemotherapy is a conventional treatment that uses drugs to kill cancer cells; however, it may induce side effects and may be incompletely effective, leading to the risk of tumor recurrence. To address this issue, we developed novel injectable thermal/near-infrared (NIR)-responsive hydrogels to control drug release. The injectable hydrogel formulation was composed of biocompatible alginates, poly(N-acryloyl glycinamide) (PNAGA) copolymers with an upper critical solution temperature, and NIR-responsive cross-linkers containing coumarin groups, which were gelated through bioorthogonal inverse electron demand Diels-Alder reactions. The hydrogels exhibited quick gelation times (120-800 s) and high drug loading efficiencies (>90%). The hydrogels demonstrated a higher percentage of drug release at 37 °C than that at 25 °C due to the enhanced swelling behavior of temperature-responsive PNAGA moieties. Upon NIR irradiation, the hydrogels released most of the entrapped doxorubicin (DOX) (97%) owing to the cleavage of NIR-sensitive coumarin ester groups. The hydrogels displayed biocompatibility with normal cells, while induced antitumor activity toward cancer cells. DOX/hydrogels treated with NIR light inhibited tumor growth in nude mice bearing tumors. In addition, the injected hydrogels emitted red fluorescence upon excitation at a green wavelength, so that the drug delivery and hydrogel degradation in vivo could be tracked in the xenograft model.


Assuntos
Resinas Acrílicas , Antineoplásicos , Neoplasias , Animais , Camundongos , Humanos , Hidrogéis/farmacologia , Alginatos , Camundongos Nus , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico , Cumarínicos , Liberação Controlada de Fármacos
7.
Nat Commun ; 15(1): 2564, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519491

RESUMO

Engineered human cardiac tissues have been utilized for various biomedical applications, including drug testing, disease modeling, and regenerative medicine. However, the applications of cardiac tissues derived from human pluripotent stem cells are often limited due to their immaturity and lack of functionality. Therefore, in this study, we establish a perfusable culture system based on in vivo-like heart microenvironments to improve human cardiac tissue fabrication. The integrated culture platform of a microfluidic chip and a three-dimensional heart extracellular matrix enhances human cardiac tissue development and their structural and functional maturation. These tissues are comprised of cardiovascular lineage cells, including cardiomyocytes and cardiac fibroblasts derived from human induced pluripotent stem cells, as well as vascular endothelial cells. The resultant macroscale human cardiac tissues exhibit improved efficacy in drug testing (small molecules with various levels of arrhythmia risk), disease modeling (Long QT Syndrome and cardiac fibrosis), and regenerative therapy (myocardial infarction treatment). Therefore, our culture system can serve as a highly effective tissue-engineering platform to provide human cardiac tissues for versatile biomedical applications.


Assuntos
Células Endoteliais , Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular , Miócitos Cardíacos , Engenharia Tecidual/métodos
8.
Int J Biol Macromol ; 260(Pt 2): 129549, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246444

RESUMO

Near-infrared (NIR) light-responsive hydrogels have emerged as a highly promising strategy for effective anticancer therapy owing to the remotely controlled release of chemotherapeutic molecules with minimal invasive manner. In this study, novel NIR-responsive hydrogels were developed from reactive oxygen species (ROS)-cleavable thioketal cross-linkers which possessed terminal tetrazine groups to undergo a bio-orthogonal inverse electron demand Diels Alder click reaction with norbornene modified carboxymethyl cellulose. The hydrogels were rapidly formed under physiological conditions and generated N2 gas as a by-product, which led to the formation of porous structures within the hydrogel networks. A NIR dye, indocyanine green (ICG) and chemotherapeutic doxorubicin (DOX) were co-encapsulated in the porous network of the hydrogels. Upon NIR-irradiation, the hydrogels showed spatiotemporal release of encapsulated DOX (>96 %) owing to the cleavage of thioketal bonds by interacting with ROS generated from ICG, whereas minimal release of encapsulated DOX (<25 %) was observed in the absence of NIR-light. The in vitro cytotoxicity results revealed that the hydrogels were highly cytocompatible and did not induce any toxic effect on the HEK-293 cells. In contrast, the DOX + ICG-encapsulated hydrogels enhanced the chemotherapeutic effect and effectively inhibited the proliferation of Hela cancer cells when irradiated with NIR-light.


Assuntos
Carboximetilcelulose Sódica , Hidrogéis , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Espécies Reativas de Oxigênio , Células HEK293 , Sistemas de Liberação de Medicamentos/métodos , Doxorrubicina/química , Liberação Controlada de Fármacos
9.
Small Methods ; 8(1): e2300790, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37749956

RESUMO

Employing porous structures is essential in high-performance electrochemical energy devices. However, obtaining uniform functional coatings on high-tortuosity structures can be challenging, even with specialized processes such as atomic layer deposition (ALD). Herein, a novel method for achieving a porous composite electrode for solid oxide fuel cells by coating La0.6 Sr0.4 Co0.2 Fe0.8 O3 -δ (LSCF) powders with ZrO2 using a powder ALD process is presented. Unlike conventional ALD, powder ALD can be used to fabricate extremely uniform coatings on porous electrodes with a thickness of tens of micrometers. The powder ALD ZrO2 coating is found to effectively suppress chemical degradation of the LSCF electrodes. The cell with the powder ALD coated cathode shows a 2.2 times higher maximum power density and 60% lower thermal degradation in activation resistance than the bare LSCF cathode cell at 700-750 °C. The result demonstrated in this study is expected to have significant implications for high-performance and durable electrodes in energy conversion/storage devices.

10.
Tissue Eng Regen Med ; 21(2): 209-221, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37837499

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is characterized by chronic inflammation and joint damage. Methotrexate (MTX), a commonly used disease-modifying anti-rheumatic drug (DMARD) used in RA treatment. However, the continued use of DMARDs can cause adverse effects and result in limited therapeutic efficacy. Cartilage extracellular matrix (CECM) has anti-inflammatory and anti-vascular effects and promotes stem cell migration, adhesion, and differentiation into cartilage cells. METHODS: CECM was assessed the dsDNA, glycosaminoglycan, collagen contents and FT-IR spectrum of CECM. Furthermore, we determined the effects of CECM and MTX on cytocompatibility in the SW 982 cells and RAW 264.7 cells. The anti-inflammatory effects of CECM and MTX were assessed using macrophage cells. Finally, we examined the in vivo effects of CECM in combination with MTX on anti-inflammation control and cartilage degradation in collagen-induced arthritis model. Anti-inflammation control and cartilage degradation were assessed by measuring the serum levels of RA-related cytokines and histology. RESULTS: CECM in combination with MTX had no effect on SW 982, effectively suppressing only RAW 264.7 activity. Moreover, anti-inflammatory effects were enhanced when low-dose MTX was combined with CECM. In a collagen-induced arthritis model, low-dose MTX combined with CECM remarkably reduced RA-related and pro-inflammatory cytokine levels in the blood. Additionally, low-dose MTX combined with CECM exerted the best cartilage-preservation effects compared to those observed in the other therapy groups. CONCLUSION: Using CECM as an adjuvant in RA treatment can augment the therapeutic effects of MTX, reduce existing drug adverse effects, and promote joint tissue regeneration.


Assuntos
Antirreumáticos , Artrite Experimental , Artrite Reumatoide , Animais , Humanos , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Espectroscopia de Infravermelho com Transformada de Fourier , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Anti-Inflamatórios , Cartilagem/metabolismo
12.
Gels ; 9(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38131947

RESUMO

Novel chemically cross-linked hydrogels derived from carboxymethyl cellulose (CMC) and alginate (Alg) were prepared through the utilization of the norbornene (Nb)-methyl tetrazine (mTz) click reaction. The hydrogels were designed to generate reactive oxygen species (ROS) from an NIR dye, indocyanine green (ICG), for combined photothermal and photodynamic therapy (PTT/PDT). The cross-linking reaction between Nb and mTz moieties occurred via an inverse electron-demand Diels-Alder chemistry under physiological conditions avoiding the need for a catalyst. The resulting hydrogels exhibited viscoelastic properties (G' ~ 492-270 Pa) and high porosity. The hydrogels were found to be injectable with tunable mechanical characteristics. The ROS production from the ICG-encapsulated hydrogels was confirmed by DPBF assays, indicating a photodynamic effect (with NIR irradiation at 1-2 W for 5-15 min). The temperature of the ICG-loaded hydrogels also increased upon the NIR irradiation to eradicate tumor cells photothermally. In vitro cytocompatibility assessments revealed the non-toxic nature of CMC-Nb and Alg-mTz towards HEK-293 cells. Furthermore, the ICG-loaded hydrogels effectively inhibited the metabolic activity of Hela cells after NIR exposure.

13.
Sci Rep ; 13(1): 22387, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104210

RESUMO

Protocol biopsy is a reliable method for assessing allografts status after kidney transplantation (KT). However, due to the risk of complications, it is necessary to establish indications and selectively perform protocol biopsies by classifying the high-risk group for early subclinical rejection (SCR). Therefore, the purpose of this study is to analyze the incidence and risk factors of early SCR (within 2 weeks) and develop a prediction model using machine learning. Patients who underwent KT at Samsung Medical Center from January 2005 to December 2020 were investigated. The incidence of SCR was investigated and risk factors were analyzed. For the development of prediction model, machine learning methods (random forest, elastic net, extreme gradient boosting [XGB]) and logistic regression were used and the performance between the models was evaluated. The cohorts of 987 patients were reviewed and analyzed. The incidence of SCR was 14.6%. Borderline cellular rejection (BCR) was the most common type of rejection, accounting for 61.8% of cases. In the analysis of risk factors, recipient age (OR 0.98, p = 0.03), donor BMI (OR 1.07, p = 0.02), ABO incompatibility (OR 0.15, p < 0.001), HLA II mismatch (two [OR 6.44, p < 0.001]), and ATG induction (OR 0.41, p < 0.001) were associated with SCR in the multivariate analysis. The logistic regression prediction model (average AUC = 0.717) and the elastic net model (average AUC = 0.712) demonstrated good performance. HLA II mismatch and induction type were consistently identified as important variables in all models. The odds ratio analysis of the logistic prediction model revealed that HLA II mismatch (OR 6.77) was a risk factor for SCR, while ATG induction (OR 0.37) was a favorable factor. Early SCR was associated with HLA II mismatches and induction agent and prediction model using machine learning demonstrates the potential to predict SCR.


Assuntos
Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Rejeição de Enxerto/etiologia , Fatores de Risco , Incompatibilidade de Grupos Sanguíneos , Aprendizado de Máquina , Estudos Retrospectivos
14.
Front Microbiol ; 14: 1293149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029200

RESUMO

Antibiotic-induced gut microbiota disruption constitutes a major risk factor for Clostridioides difficile infection (CDI). Further, antibiotic therapy, which is the standard treatment option for CDI, exacerbates gut microbiota imbalance, thereby causing high recurrent CDI incidence. Consequently, probiotic-based CDI treatment has emerged as a long-term management and preventive option. However, the mechanisms underlying the therapeutic effects of probiotics for CDI remain uninvestigated, thereby creating a knowledge gap that needs to be addressed. To fill this gap, we used a multiomics approach to holistically investigate the mechanisms underlying the therapeutic effects of probiotics for CDI at a molecular level. We first screened Bifidobacterium longum owing to its inhibitory effect on C. difficile growth, then observed the physiological changes associated with the inhibition of C. difficile growth and toxin production via a multiomics approach. Regarding the mechanism underlying C. difficile growth inhibition, we detected a decrease in intracellular adenosine triphosphate (ATP) synthesis due to B. longum-produced lactate and a subsequent decrease in (deoxy)ribonucleoside triphosphate synthesis. Via the differential regulation of proteins involved in translation and protein quality control, we identified B. longum-induced proteinaceous stress. Finally, we found that B. longum suppressed the toxin production of C. difficile by replenishing proline consumed by it. Overall, the findings of the present study expand our understanding of the mechanisms by which probiotics inhibit C. difficile growth and contribute to the development of live biotherapeutic products based on molecular mechanisms for treating CDI.

16.
Mol Genet Genomics ; 298(6): 1435-1447, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37725237

RESUMO

High-quality molecular markers are essential for marker-assisted selection to accelerate breeding progress. Compared with diploid species, recently diverged polyploid crop species tend to have highly similar homeologous subgenomes, which is expected to limit the development of broadly applicable locus-specific single-nucleotide polymorphism (SNP) assays. Furthermore, it is particularly challenging to make genome-wide marker sets for species that lack a reference genome. Here, we report the development of a genome-wide set of kompetitive allele specific PCR (KASP) markers for marker-assisted recurrent selection (MARS) in the tetraploid minor crop perilla. To find locus-specific SNP markers across the perilla genome, we used genotyping-by-sequencing (GBS) to construct linkage maps of two F2 populations. The two resulting high-resolution linkage maps comprised 2326 and 2454 SNP markers that spanned a total genetic distance of 2133 cM across 16 linkage groups and 2169 cM across 21 linkage groups, respectively. We then obtained a final genetic map consisting of 22 linkage groups with 1123 common markers from the two genetic maps. We selected 96 genome-wide markers for MARS and confirmed the accuracy of markers in the two F2 populations using a high-throughput Fluidigm system. We confirmed that 91.8% of the SNP genotyping results from the Fluidigm assay were the same as the results obtained through GBS. These results provide a foundation for marker-assisted backcrossing and the development of new varieties of perilla.


Assuntos
Perilla , Tetraploidia , Genótipo , Perilla/genética , Polimorfismo de Nucleotídeo Único/genética , Melhoramento Vegetal , Ligação Genética , Genoma de Planta/genética
17.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745359

RESUMO

The mismatch repair (MMR) pathway is known as a tumor suppressive pathway and genes involved in MMR are commonly mutated in hereditary colorectal or other cancer types. However, the function of MMR genes/proteins in breast cancer progression and metastasis are largely unknown. We found that MSH2, but not MLH1, is highly enriched in basal-like breast cancer (BLBC) and that its protein expression is inversely correlated with overall survival time (OS). MSH2 expression is frequently elevated due to genomic amplification or gain-of-expression in BLBC, which results in increased MSH2 protein to pair with MSH6 (collectively referred to as MutSα). Genetic deletion of MSH2 or MLH1 results in a contrasting phenotype in metastasis, with MSH2-deletion leading to reduced metastasis and MLH1-deletion to enhanced liver or lung metastasis. Mechanistically, MSH2-deletion induces the expression of a panel of chemokines in BLBC via epigenetic and/or transcriptional regulation, which leads to an immune reactive tumor microenvironment (TME) and elevated immune cell infiltrations. MLH1 is not correlated with chemokine expression and/or immune cell infiltration in BLBC, but its deletion results in strong accumulation of neutrophils that are known for metastasis promotion. Our study supports the differential functions of MSH2 and MLH1 in BLBC progression and metastasis, which challenges the paradigm of the MMR pathway as a universal tumor suppressive mechanism.

18.
Front Psychol ; 14: 1228881, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731880

RESUMO

Introduction: The gig economy is extolled for its potential to stimulate economic and social development. This study examines the mediating roles of controlled and autonomous motivation in the relationship between job crafting and innovative behavior in the context of knowledge workers in the gig economy. Methods: To examine these relationships, we propose and test a conceptual framework using an online survey conducted among knowledge workers in China. The participants consisted of 302 knowledge workers who voluntarily participated in the study. We used structural equation modeling to test the proposed relationships among the variables. Results: Controlled and autonomous motivation mediates the relationship between job crafting and innovative behavior. Discussion: Our study shed light on the knowledge workers' motivation dilemma in the gig economy, with theoretical implications for research regarding job crafting, motivation, and practice implications about the job crafting and innovative behavior of knowledge workers.

19.
J Med Food ; 26(8): 595-604, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37594560

RESUMO

Acorn (Quercus acutissima CARR.) has been used in traditional food and medicinal ethnopharmacology in Asia, and it has shown multifarious functions such as antidementia, antiobesity, and antiasthma functions. However, there is limited scientific evidence about the efficacy of acorn for ameliorating skin problems. Treatment with ethanol-extracted acorns (EeA's) ablated the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), monocyte chemoattractant protein-1 (MCP-1), and interleukin (IL)-8 stimulated by tumor necrosis factor (TNF)-α in human adult low calcium high temperature (HaCaT) cells under sublethal dosages. In addition, treatment with EeA dose dependently inhibited the ex vivo hyper keratin formation induced by TNF-α in HaCaT cells in conjunction with the blockade of cytokeratin-1 (CK-1) and cytokeratin-5 (CK-5) expression. Moreover, EeA treatment stimulated the expression of hyaluronic acid (HA) expression in human fibroblasts in a dose-dependent manner. Linoleamide was identified as the functional component of EeA using preparative high-performance liquid chromatography and ultra high performance liquid chromatography-mass spectrometry-mass spectrometry analysis, and the anti-inflammatory features and enhanced HA expression were verified. Collectively, these results suggest the efficacy of EeA supplementation in improving skin problems via anti-inflammation and upregulating HA production.


Assuntos
Ácido Hialurônico , Quercus , Adulto , Humanos , Queratinócitos , Células HaCaT , Etanol
20.
Child Health Nurs Res ; 29(3): 218-228, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37554089

RESUMO

PURPOSE: This study aimed to identify clinical characteristics of South Korean pediatric inflammatory bowel disease (IBD) in a children's hospital over the past 5 years, with a specific focus on comparing the features observed between Crohn's disease (CD) and ulcerative colitis (UC). Additionally, it aimed to examine the nursing diagnoses given to patients. METHODS: This retrospective study analyzed the medical records of Korean pediatric patients under 18 years of age who were diagnosed with IBD and hospitalized at a children's hospital in Seoul, South Korea, from January 2017 to December 2021. RESULTS: The number of pediatric patients diagnosed with IBD steadily increased. This finding was particularly prominent for CD patients, the majority of whom were male. Pediatric patients with CD had significantly higher rates of abdominal pain and perianal lesions, while pediatric patients with UC had a higher rate of bloody stool. Laboratory findings indicated that CD patients had higher levels of inflammatory markers and lower albumin levels than UC patients. The nursing diagnoses given during hospitalization mostly related to safety and protection, physical comfort, and gastrointestinal function. CONCLUSION: This study provides insights into Korean pediatric IBD patients, enabling early detection and the development of nursing intervention strategies. From a comprehensive perspective, nursing care should not only address patients' physical needs but also their psychosocial needs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA