Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 125(22): 5694-5705, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34048256

RESUMO

Stimulated emission depletion (STED) in confocal fluorescence microscopy enables a visualization of biological structures within cells far below the optical diffraction limit. To meet the demand in the field for simultaneous investigations of multiple species within a cell, a couple of different STED techniques have been proposed, each with their own challenges. By systemically exploiting spectral differences in the absorption of fluorescent labels, we present a novel, beneficial approach to multispecies STED nanoscopy. By using three excitation wavelengths in nanosecond pulsed interleaved excitation (PIE) mode, we probe quasi simultaneously multiple species with fluorescent labels having absorption maxima as close as 13 nm. The acquired image is decomposed into its single species contributions by application of a linear unmixing algorithm based on present reference patterns. For multispecies images containing single species regions, we introduce the image correlation map (ICM). Here, the single species regions easily can be identified in order to generate the necessary single species reference patterns. This avoids the otherwise cumbersome and artifact prone preparation and recording of additional reference samples. The power of the proposed imaging scheme persists in species separation quality at high speed shown for up to three species with established reference samples and dyes commonly used for cellular STED imaging.


Assuntos
Algoritmos , Microscopia Confocal , Microscopia de Fluorescência
2.
PLoS One ; 10(6): e0130717, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26091552

RESUMO

By overcoming the diffraction limit in light microscopy, super-resolution techniques, such as stimulated emission depletion (STED) microscopy, are experiencing an increasing impact on life sciences. High costs and technically demanding setups, however, may still hinder a wider distribution of this innovation in biomedical research laboratories. As far-field microscopy is the most widely employed microscopy modality in the life sciences, upgrading already existing systems seems to be an attractive option for achieving diffraction-unlimited fluorescence microscopy in a cost-effective manner. Here, we demonstrate the successful upgrade of a commercial time-resolved confocal fluorescence microscope to an easy-to-align STED microscope in the single-beam path layout, previously proposed as "easy-STED", achieving lateral resolution < λ/10 corresponding to a five-fold improvement over a confocal modality. For this purpose, both the excitation and depletion laser beams pass through a commercially available segmented phase plate that creates the STED-doughnut light distribution in the focal plane, while leaving the excitation beam unaltered when implemented into the joint beam path. Diffraction-unlimited imaging of 20 nm-sized fluorescent beads as reference were achieved with the wavelength combination of 635 nm excitation and 766 nm depletion. To evaluate the STED performance in biological systems, we compared the popular phalloidin-coupled fluorescent dyes Atto647N and Abberior STAR635 by labeling F-actin filaments in vitro as well as through immunofluorescence recordings of microtubules in a complex epithelial tissue. Here, we applied a recently proposed deconvolution approach and showed that images obtained from time-gated pulsed STED microscopy may benefit concerning the signal-to-background ratio, from the joint deconvolution of sub-images with different spatial information which were extracted from offline time gating.


Assuntos
Microscopia Confocal/instrumentação , Citoesqueleto de Actina/química , Citoesqueleto de Actina/patologia , Algoritmos , Animais , Dípteros/metabolismo , Desenho de Equipamento , Microtúbulos/química , Microtúbulos/patologia , Músculo Esquelético/metabolismo , Coelhos , Glândulas Salivares/metabolismo
3.
Anal Bioanal Chem ; 387(1): 71-82, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17160654

RESUMO

A new general strategy based on the use of multiparameter fluorescence detection (MFD) to register and quantitatively analyse fluorescence images is introduced. Multiparameter fluorescence imaging (MFDi) uses pulsed excitation, time-correlated single-photon counting and a special pixel clock to simultaneously monitor the changes in the eight-dimensional fluorescence information (fundamental anisotropy, fluorescence lifetime, fluorescence intensity, time, excitation spectrum, fluorescence spectrum, fluorescence quantum yield, distance between fluorophores) in real time. The three spatial coordinates are also stored. The most statistically efficient techniques known from single-molecule spectroscopy are used to estimate fluorescence parameters of interest for all pixels, not just for the regions of interest. Their statistical significance is judged from a stack of two-dimensional histograms. In this way, specific pixels can be selected for subsequent pixel-based subensemble analysis in order to improve the statistical accuracy of the parameters estimated. MFDi avoids the need for sequential measurements, because the registered data allow one to perform many analysis techniques, such as fluorescence-intensity distribution analysis (FIDA) and fluorescence correlation spectroscopy (FCS), in an off-line mode. The limitations of FCS for counting molecules and monitoring dynamics are discussed. To demonstrate the ability of our technique, we analysed two systems: (i) interactions of the fluorescent dye Rhodamine 110 inside and outside of a glutathione sepharose bead, and (ii) microtubule dynamics in live yeast cells of Schizosaccharomyces pombe using a fusion protein of Green Fluorescent Protein (GFP) with Minichromosome Altered Loss Protein 3 (Mal3), which is involved in the dynamic cycle of polymerising and depolymerising microtubules.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Citometria de Varredura a Laser/métodos , Algoritmos , Difusão , Polarização de Fluorescência , Glutationa/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência/métodos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Rodaminas/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Sefarose/química , Espectrometria de Fluorescência/métodos
4.
Proc Natl Acad Sci U S A ; 101(9): 2858-63, 2004 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-14981239

RESUMO

Synaptic exocytosis requires the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins syntaxin 1, SNAP-25, and synaptobrevin (VAMP). Assembly of the SNAREs into a stable core complex is supposed to catalyze membrane fusion, and proteoliposomes reconstituted with synaptic SNARE proteins spontaneously fuse with each other. We now show that liposome fusion mediated by synaptic SNAREs is inhibited by botulinum neurotoxin E (BoNT/E) but can be rescued by supplementing the C-terminal portion of SNAP-25. Furthermore, fusion is prevented by a SNAP-25-specific antibody known to block exocytosis in chromaffin cells, and it is competed for by soluble fragments of the R-SNAREs synaptobrevin 2, endobrevin/VAMP-8, and tomosyn. No accumulation of clustered vesicles is observed during the reaction. Rapid artificial clustering of SNARE-containing proteoliposomes enhances the fusion rate at low but not at saturating liposome concentrations. We conclude that the rate of liposome fusion is dominated by the intrinsic properties of the SNAREs rather than by the preceding docking step.


Assuntos
Lipossomos/química , Proteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Proteínas de Transporte Vesicular , Animais , Clonagem Molecular , Transferência Ressonante de Energia de Fluorescência , Cinética , Fusão de Membrana , Proteolipídeos/química , Ratos , Proteínas Recombinantes/química , Proteínas SNARE , Sinapses/fisiologia , Proteína 25 Associada a Sinaptossoma , Sintaxina 1
5.
Nat Struct Mol Biol ; 11(2): 135-41, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14730350

RESUMO

Synthesis of ATP from ADP and phosphate, catalyzed by F(0)F(1)-ATP synthases, is the most abundant physiological reaction in almost any cell. F(0)F(1)-ATP synthases are membrane-bound enzymes that use the energy derived from an electrochemical proton gradient for ATP formation. We incorporated double-labeled F(0)F(1)-ATP synthases from Escherichia coli into liposomes and measured single-molecule fluorescence resonance energy transfer (FRET) during ATP synthesis and hydrolysis. The gamma subunit rotates stepwise during proton transport-powered ATP synthesis, showing three distinct distances to the b subunits in repeating sequences. The average durations of these steps correspond to catalytic turnover times upon ATP synthesis as well as ATP hydrolysis. The direction of rotation during ATP synthesis is opposite to that of ATP hydrolysis.


Assuntos
ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/metabolismo , Catálise , Transferência de Energia , Fluorescência , Hidrólise , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA