Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-482147

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant BA.2 has spread in many countries, replacing the earlier Omicron subvariant BA.1 and other variants. Here, using a cell culture infection assay, we quantified the intrinsic sensitivity of BA.2 and BA.1 compared with other variants of concern, Alpha, Gamma, and Delta, to five approved-neutralizing antibodies and antiviral drugs. Our assay revealed the diverse sensitivities of these variants to antibodies, including the loss of response of both BA.1 and BA.2 to casirivimab and of BA.1 to imdevimab. In contrast, EIDD-1931 and nirmatrelvir showed a more conserved activities to these variants. The viral response profile combined with mathematical analysis estimated differences in antiviral effects among variants in the clinical concentrations. These analyses provide essential evidence that gives insight into variant emergences impact on choosing optimal drug treatment.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-429001

RESUMO

Development of effective antiviral drugs targeting the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) are urgently needed to combat the coronavirus disease 2019 (COVID-19). Oxysterols, defined as oxidized derivatives of cholesterol, include endogenous (naturally occurring) cholesterol metabolites as well as semi-synthetic oxysterol derivatives. We have previously studied the use of semi-synthetic oxysterol derivatives as drug candidates for inhibition of cancer, fibrosis, and bone regeneration. In this study, we have screened a panel of naturally occurring and semi-synthetic oxysterol derivatives for anti-SARS-CoV-2 activity, using a cell culture infection assay. We show that the natural oxysterols, 7-ketocholesterol, 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 27-hydroxycholesterol, substantially inhibited SARS-CoV-2 propagation in cultured cells. Among semi-synthetic oxysterols, Oxy186 displayed antiviral activity comparable to natural oxysterols. In addition, related oxysterol analogues Oxy210 and Oxy232 displayed more robust anti-SARS-CoV-2 activities, reducing viral replication more than 90% at 10 M and 99% at 15 M, respectively. When orally administered in mice, peak plasma concentrations of Oxy210 fall into a therapeutically relevant range (19 M), based on the dose-dependent curve for antiviral activity in our cell culture infection assay. Mechanistic studies suggest that Oxy210 reduced replication of SARS-CoV-2 with disrupting the formation of double membrane vesicles (DMVs), intracellular membrane compartments associated with viral replication. Oxy210 also inhibited the replication of hepatitis C virus, another RNA virus whose replication is associated with DMVs, but not the replication of the DMV-independent hepatitis D virus. Our study warrants further evaluation of Oxy210 and Oxy232 as a safe and reliable oral medication, which could help protect vulnerable populations with increased risk developing COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA