Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Cogn Neurosci ; 32(1): 155-166, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31479349

RESUMO

Speech comprehension requires rapid online processing of a continuous acoustic signal to extract structure and meaning. Previous studies on sentence comprehension have found neural correlates of the predictability of a word given its context, as well as of the precision of such a prediction. However, they have focused on single sentences and on particular words in those sentences. Moreover, they compared neural responses to words with low and high predictability, as well as with low and high precision. However, in speech comprehension, a listener hears many successive words whose predictability and precision vary over a large range. Here, we show that cortical activity in different frequency bands tracks word surprisal in continuous natural speech and that this tracking is modulated by precision. We obtain these results through quantifying surprisal and precision from naturalistic speech using a deep neural network and through relating these speech features to EEG responses of human volunteers acquired during auditory story comprehension. We find significant cortical tracking of surprisal at low frequencies, including the delta band as well as in the higher frequency beta and gamma bands, and observe that the tracking is modulated by the precision. Our results pave the way to further investigate the neurobiology of natural speech comprehension.


Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiologia , Compreensão/fisiologia , Aprendizado Profundo , Eletroencefalografia , Psicolinguística , Percepção da Fala/fisiologia , Adulto , Feminino , Neuroimagem Funcional , Humanos , Masculino , Adulto Jovem
3.
J Cogn Neurosci ; 29(7): 1119-1131, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28294714

RESUMO

While listening to continuous speech, humans process beat information to correctly identify word boundaries. The beats of language are stress patterns that are created by combining lexical (word-specific) stress patterns and the rhythm of a specific language. Sometimes, the lexical stress pattern needs to be altered to obey the rhythm of the language. This study investigated the interplay of lexical stress patterns and rhythmical well-formedness in natural speech with fMRI. Previous electrophysiological studies on cases in which a regular lexical stress pattern may be altered to obtain rhythmical well-formedness showed that even subtle rhythmic deviations are detected by the brain if attention is directed toward prosody. Here, we present a new approach to this phenomenon by having participants listen to contextually rich stories in the absence of a task targeting the manipulation. For the interaction of lexical stress and rhythmical well-formedness, we found one suprathreshold cluster localized between the cerebellum and the brain stem. For the main effect of lexical stress, we found higher BOLD responses to the retained lexical stress pattern in the bilateral SMA, bilateral postcentral gyrus, bilateral middle fontal gyrus, bilateral inferior and right superior parietal lobule, and right precuneus. These results support the view that lexical stress is processed as part of a sensorimotor network of speech comprehension. Moreover, our results connect beat processing in language to domain-independent timing perception.


Assuntos
Encéfalo/fisiologia , Compreensão/fisiologia , Narração , Percepção da Fala/fisiologia , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Oxigênio/sangue , Periodicidade , Fala , Adulto Jovem
4.
Hum Brain Mapp ; 36(11): 4231-46, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26356583

RESUMO

The neural correlates of theory of mind (ToM) are typically studied using paradigms which require participants to draw explicit, task-related inferences (e.g., in the false belief task). In a natural setup, such as listening to stories, false belief mentalizing occurs incidentally as part of narrative processing. In our experiment, participants listened to auditorily presented stories with false belief passages (implicit false belief processing) and immediately after each story answered comprehension questions (explicit false belief processing), while neural responses were measured with functional magnetic resonance imaging (fMRI). All stories included (among other situations) one false belief condition and one closely matched control condition. For the implicit ToM processing, we modeled the hemodynamic response during the false belief passages in the story and compared it to the hemodynamic response during the closely matched control passages. For implicit mentalizing, we found activation in typical ToM processing regions, that is the angular gyrus (AG), superior medial frontal gyrus (SmFG), precuneus (PCUN), middle temporal gyrus (MTG) as well as in the inferior frontal gyrus (IFG) billaterally. For explicit ToM, we only found AG activation. The conjunction analysis highlighted the left AG and MTG as well as the bilateral IFG as overlapping ToM processing regions for both implicit and explicit modes. Implicit ToM processing during listening to false belief passages, recruits the left SmFG and billateral PCUN in addition to the "mentalizing network" known form explicit processing tasks.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Compreensão/fisiologia , Teoria da Mente/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA