Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(30): 40286-40296, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39013146

RESUMO

Plasmons have facilitated diverse analytical applications due to the boosting signal detectability by hot spots. In practical applications, it is crucial to fabricate straightforward, large-scale, and reproducible plasmonic substrates. Dewetting treatment, via applying direct thermal annealing of metal films, has been used as a straightforward method in the fabrication of such plasmonic nanostructures. However, tailoring the evolution of the dewetting process of metal films poses considerable experimental complexities, mainly due to nanoscale structure formation. Here, we use grazing-incidence small- and wide-angle X-ray scattering for the in situ investigation of the high-power impulse magnetron sputter deposition of Ag on self-assembled Au nanoparticle arrays at low-temperature dewetting conditions. This approach allows us to examine both the direct formation of binary Au/Ag nanostructure and the consequential impact of the dewetting process on the spatial arrangement of the bimetallic nanoparticles. It is observed that the dewetting at 100 °C is sufficient to favor the establishment of a homogenized structural configuration of bimetallic nanostructures, which is beneficial for localized surface plasmon resonances (LSPRs). The fabricated metal nanostructures show potential application for the surface-enhanced Raman scattering (SERS) detection of rhodamine 6G molecules. As SERS platform, bimetallic nanostructures formed with dewetting conditions turn out to be superior to those without dewetting conditions. The method in this work is envisioned as a facile strategy for the fabrication of plasmonic nanostructures.

2.
Nat Commun ; 15(1): 3923, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724494

RESUMO

While the role of crystal facets is well known in traditional heterogeneous catalysis, this effect has not yet been thoroughly studied in plasmon-assisted catalysis, where attention has primarily focused on plasmon-derived mechanisms. Here, we investigate plasmon-assisted electrocatalytic CO2 reduction using different shapes of plasmonic Au nanoparticles - nanocube (NC), rhombic dodecahedron (RD), and octahedron (OC) - exposing {100}, {110}, and {111} facets, respectively. Upon plasmon excitation, Au OCs doubled CO Faradaic efficiency (FECO) and tripled CO partial current density (jCO) compared to a dark condition, with NCs also improving under illumination. In contrast, Au RDs maintained consistent performance irrespective of light exposure, suggesting minimal influence of light on the reaction. Temperature experiments ruled out heat as the main factor to explain such differences. Atomistic simulations and electromagnetic modeling revealed higher hot carrier abundance and electric field enhancement on Au OCs and NCs than RDs. These effects now dominate the reaction landscape over the crystal facets, thus shifting the reaction sites when comparing dark and plasmon-activated processes. Plasmon-assisted H2 evolution reaction experiments also support these findings. The dominance of low-coordinated sites over facets in plasmonic catalysis suggests key insights for designing efficient photocatalysts for energy conversion and carbon neutralization.

3.
Angew Chem Int Ed Engl ; 61(44): e202212640, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36074055

RESUMO

Carbon dioxide electroreduction (CO2 RR) is a sustainable way of producing carbon-neutral fuels. Product selectivity in CO2 RR is regulated by the adsorption energy of reaction-intermediates. Here, we employ differential phase contrast-scanning transmission electron microscopy (DPC-STEM) to demonstrate that Sn heteroatoms on a Ag catalyst generate very strong and atomically localized electric fields. In situ attenuated total reflection infrared spectroscopy (ATR-IR) results verified that the localized electric field enhances the adsorption of *COOH, thus favoring the production of CO during CO2 RR. The Ag/Sn catalyst exhibits an approximately 100 % CO selectivity at a very wide range of potentials (from -0.5 to -1.1 V, versus reversible hydrogen electrode), and with a remarkably high energy efficiency (EE) of 76.1 %.

4.
ACS Energy Lett ; 7(2): 778-815, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35178471

RESUMO

The successful development of artificial photosynthesis requires finding new materials able to efficiently harvest sunlight and catalyze hydrogen generation and carbon dioxide reduction reactions. Plasmonic nanoparticles are promising candidates for these tasks, due to their ability to confine solar energy into molecular regions. Here, we review recent developments in hybrid plasmonic photocatalysis, including the combination of plasmonic nanomaterials with catalytic metals, semiconductors, perovskites, 2D materials, metal-organic frameworks, and electrochemical cells. We perform a quantitative comparison of the demonstrated activity and selectivity of these materials for solar fuel generation in the liquid phase. In this way, we critically assess the state-of-the-art of hybrid plasmonic photocatalysts for solar fuel production, allowing its benchmarking against other existing heterogeneous catalysts. Our analysis allows the identification of the best performing plasmonic systems, useful to design a new generation of plasmonic catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA