Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012415

RESUMO

A facile methodology system for synthesizing solid polymer electrolytes (SPEs) based on methylcellulose, dextran, lithium perchlorate (as ionic sources), and glycerol (such as a plasticizer) (MC:Dex:LiClO4:Glycerol) has been implemented. Fourier transform infrared spectroscopy (FTIR) and two imperative electrochemical techniques, including linear sweep voltammetry (LSV) and electrical impedance spectroscopy (EIS), were performed on the films to analyze their structural and electrical properties. The FTIR spectra verify the interactions between the electrolyte components. Following this, a further calculation was performed to determine free ions (FI) and contact ion pairs (CIP) from the deconvolution of the peak associated with the anion. It is verified that the electrolyte containing the highest amount of glycerol plasticizer (MDLG3) has shown a maximum conductivity of 1.45 × 10-3 S cm-1. Moreover, for other transport parameters, the mobility (µ), number density (n), and diffusion coefficient (D) of ions were enhanced effectively. The transference number measurement (TNM) of electrons (tel) was 0.024 and 0.976 corresponding to ions (tion). One of the prepared samples (MDLG3) had 3.0 V as the voltage stability of the electrolyte.


Assuntos
Glicerol , Plastificantes , Biopolímeros/química , Eletrólitos/química , Transporte de Íons , Íons , Lítio
2.
Materials (Basel) ; 15(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36013716

RESUMO

The attention to a stable and ionic conductive electrolyte is driven by the limitations of liquid electrolytes, particularly evaporation and leakage, which restrain their widespread use for electrochemical device applications. Solid polymer electrolyte (SPE) is considered to be a potential alternative since it possesses high safety compared to its counterparts. However, it still suffers from low device efficiency due to an incomplete understanding of the mechanism of ion transport parameters. Here, we present a simple in situ solution casting method for the production of polymer-based electrolytes using abundantly available methylcellulose (MC) doped at different weight percentages of potassium thiocyanate (KSCN) salt. Fourier transform infrared (FTIR), and electrochemical impedance spectroscopy (EIS) methods were used to characterize the prepared samples. Based on EIS simulation and FTIR deconvolution associated with the SCN anion peak, various ion transport parameters were determined. The host MC medium and KSCN salt have a strong interaction, which was evident from both peak shifting and intensity alteration of FTIR spectra. From the EIS modeling, desired electric circuits correlated with ion movement and chain polarization were drawn. The highest ionic conductivity of 1.54 × 10-7 S cm-1 is determined from the fitted EIS curve for the film doped with 30 wt.% of KSCN salt. From the FTIR deconvoluted peak, free ions, ions in contact with one another, and ion aggregates were separated. The extracted ion transport parameters from the EIS method and FTIR spectra of the SCN anion band confirm that both increased carrier concentration and their mobility were crucial in improving the overall conductivity of the electrolyte. The dielectric investigations were further used to understand the conductivity of the films. High dielectric constants were observed at low frequencies for all MC:KSCN systems. The dispersion with a high dielectric constant in the low-frequency band is ascribed to the dielectric polarization. The wide shift of M″ peak towards the high frequency was evidenced by the MC-based electrolyte impregnated with 30 wt.% of KSCN salt, revealing the improved ionic movement assisted with chain segmental motion. The AC conductivity pattern was influenced by salt concentration.

3.
Molecules ; 27(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35164273

RESUMO

In this report, the preparation of solid polymer electrolytes (SPEs) is performed from polyvinyl alcohol, methyl cellulose (PVA-MC), and ammonium chloride (NH4Cl) using solution casting methodology for its use in electrical double layer capacitors (EDLCs). The characterizations of the prepared electrolyte are conducted using a variety of techniques, including Fourier transform infrared spectroscopy (FTIR), electrical impedance spectroscopy (EIS), cyclic voltammetry (CV), and linear sweep voltammetry (LSV). The interaction between the polymers and NH4Cl salt are assured via FTIR. EIS confirms the possibility of obtaining a reasonably high conductance of the electrolyte of 1.99 × 10-3 S/cm at room temperature. The dielectric response technique is applied to determine the extent of the ion dissociation of the NH4Cl in the PVA-MC-NH4Cl systems. The appearance of a peak in the imaginary part of the modulus study recognizes the contribution of chain dynamics and ion mobility. Transference number measurement (TNM) is specified and is found to be (tion) = 0.933 for the uppermost conducting sample. This verifies that ions are the predominant charge carriers. From the LSV study, 1.4 V are recorded for the relatively high-conducting sample. The CV curve response is far from the rectangular shape. The maximum specific capacitance of 20.6 F/g is recorded at 10 mV/s.

4.
Polymers (Basel) ; 13(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069445

RESUMO

In this work, a green approach was implemented to prepare polymer composites using polyvinyl alcohol polymer and the extract of black tea leaves (polyphenols) in a complex form with Co2+ ions. A range of techniques was used to characterize the Co2+ complex and polymer composite, such as Ultraviolet-visible (UV-Visible) spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The optical parameters of absorption edge, refractive index (n), dielectric properties including real and imaginary parts (εr, and εi) were also investigated. The FRIR and XRD spectra were used to examine the compatibility between the PVA polymer and Co2+-polyphenol complex. The extent of interaction was evidenced from the shifts and change in the intensity of the peaks. The relatively wide amorphous phase in PVA polymer increased upon insertion of the Co2+-polyphenol complex. The amorphous character of the Co2+ complex was emphasized with the appearance of a hump in the XRD pattern. From UV-Visible spectroscopy, the optical properties, such as absorption edge, refractive index (n), (εr), (εi), and bandgap energy (Eg) of parent PVA and composite films were specified. The Eg of PVA was lowered from 5.8 to 1.82 eV upon addition of 45 mL of Co2+-polyphenol complex. The N/m* was calculated from the optical dielectric function. Ultimately, various types of electronic transitions within the polymer composites were specified using Tauc's method. The direct bandgap (DBG) treatment of polymer composites with a developed amorphous phase is fundamental for commercialization in optoelectronic devices.

5.
Polymers (Basel) ; 13(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33803001

RESUMO

The fabrication of energy storage EDLC in this work is achieved with the implementation of a conducting chitosan-methylcellulose-NH4NO3-glycerol polymer electrolyte system. The simple solution cast method has been used to prepare the electrolyte. The impedance of the samples was fitted with equivalent circuits to design the circuit diagram. The parameters associated with ion transport are well studied at various plasticizer concentrations. The FTIR investigation has been done on the films to detect the interaction that occurs among plasticizer and polymer electrolyte. To get more insights into ion transport parameters, the FTIR was deconvoluted. The transport properties achieved from both impedance and FTIR are discussed in detail. It was discovered that the transport parameter findings are in good agreement with both impedance and FTIR studies. A sample with high transport properties was characterized for ion dominancy and stability through the TNM and LSV investigations. The dominancy of ions in the electrolyte verified as the tion of the electrolyte is established to be 0.933 whereas it is potentially stable up to 1.87 V. The rechargeability of the EDLC is steady up to 500 cycles. The internal resistance, energy density, and power density of the EDLC at the 1st cycle are 53 ohms, 6.97 Wh/kg, and 1941 W/kg, respectively.

6.
Membranes (Basel) ; 10(12)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276495

RESUMO

The polymer electrolyte based on Dx:Cs:Mg(CH3COO)2:Ni with three different glycerol concentrations have been prepared. The impedance study has verified that the electrolyte with 42 wt.% of glycerol (A3) has the highest ionic conductivity of 7.71 × 10-6 S cm-1 at room temperature. The ionic conductivity is found to be influenced by the transport parameters. From the dielectric analysis, it was shown that the electrolytes in this system obeyed the non-Debye behavior. The A3 electrolyte exhibited a dominancy of ions (tion > te) with a breakdown voltage of 2.08 V. The fabricated electrochemical double layer capacitor (EDLC) achieved the specific capacitance values of 24.46 F/g and 39.68 F/g via the cyclic voltammetry (CV) curve and the charge-discharge profile, respectively. The other significant parameters to evaluate the performance of EDLC have been determined, such as internal resistance (186.80 to 202.27 Ω) energy density (4.46 Wh/kg), power density (500.58 to 558.57 W/kg) and efficiency (92.88%).

7.
Polymers (Basel) ; 12(9)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867191

RESUMO

In this study, plasticized films of polyvinyl alcohol (PVA): chitosan (CS) based electrolyte impregnated with ammonium thiocyanate (NH4SCN) were successfully prepared using a solution-casting technique. The structural features of the electrolyte films were investigated through the X-ray diffraction (XRD) pattern. The enrichment of the amorphous phase with increasing glycerol concentration was confirmed by observing broad humps. The electrical impedance spectroscopy (EIS) portrays the improvement of ionic conductivity from 10-5 S/cm to 10-3 S/cm upon the addition of plasticizer. The electrolytes incorporated with 28 wt.% and 42 wt.% of glycerol were observed to be mainly ionic conductor as the ionic transference number measurement (TNM) was found to be 0.97 and 0.989, respectively. The linear sweep voltammetry (LSV) investigation indicates that the maximum conducting sample is stable up to 2 V. An electrolyte with the highest conductivity was used to make an energy storage electrical double-layer capacitor (EDLC) device. The cyclic voltammetry (CV) plot depicts no distinguishable peaks in the polarization curve, which means no redox reaction has occurred at the electrode/electrolyte interface. The fabricated EDLC displays the initial specific capacitance, equivalent series resistance, energy density, and power density of 35.5 F/g, 65 Ω, 4.9 Wh/kg, and 399 W/kg, respectively.

8.
Materials (Basel) ; 13(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825367

RESUMO

Polymer electrolytes and composites have prevailed in the high performance and mobile marketplace during recent years. Polymer-based solid electrolytes possess the benefits of low flammability, excellent flexibility, good thermal stability, as well as higher safety. Several researchers have paid attention to the optical properties of polymer electrolytes and their composites. In the present review paper, first, the characteristics, fundamentals, advantages and principles of various types of polymer electrolytes were discussed. Afterward, the characteristics and performance of various polymer hosts on the basis of specific essential and newly published works were described. New developments in various approaches to investigate the optical properties of polymer electrolytes were emphasized. The last part of the review devoted to the optical band gap study using two methods: Tauc's model and optical dielectric loss parameter. Based on recently published literature sufficient quantum mechanical backgrounds were provided to support the applicability of the optical dielectric loss parameter for the band gap study. In this review paper, it was demonstrated that both Tauc's model and optical dielectric loss should be studied to specify the type of electron transition and estimate the optical band gap accurately. Other parameters such as absorption coefficient, refractive index and optical dielectric constant were also explored.

9.
Polymers (Basel) ; 12(9)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825679

RESUMO

In the present work it was shown that low lattice energy ammonium salts are not favorable for polymer electrolyte preparation for electrochemical device applications. Polymer blend electrolytes based on chitosan:poly(ethylene oxide) (CS:PEO) incorporated with various amounts of low lattice energy NH4BF4ammonium salt have been prepared using the solution cast technique. Both structural and morphological studies were carried out to understand the phenomenon of ion association. Sharp peaks appeared in X-ray diffraction (XRD) spectra of the samples with high salt concentration. The degree of crystallinity increased from 8.52 to 65.84 as the salt concentration increased up to 40 wt.%. These are correlated to the leakage of the associated anions and cations of the salt to the surface of the polymer. The structural behaviors were further confirmed by morphological study. The morphological results revealed the large-sized protruded salts at high salt concentration. Based on lattice energy of salts, the phenomena of salt leakage were interpreted. Ammonium salts with lattice energy lower than 600 kJ/mol are not preferred for polymer electrolyte preparation due to the significant tendency of ion association among cations and anions. Electrical impedance spectroscopy was used to estimate the conductivity of the samples. It was found that the bulk resistance increased from 1.1 × 104 ohm to 0.7 × 105 ohm when the salt concentration raised from 20 wt.% to 40 wt.%, respectively; due to the association of cations and anions. The low value of direct current (DC) conductivity (7.93 × 10-7 S/cm) addressed the non-suitability of the electrolytes for electrochemical device applications. The calculated values of the capacitance over the interfaces of electrodes-electrolytes (C2) were found to drop from 1.32 × 10-6 F to 3.13 × 10-7 F with increasing salt concentration. The large values of dielectric constant at low frequencies are correlated to the electrode polarization phenomena while their decrements with rising frequency are attributed to the lag of ion polarization in respect of the fast orientation of the applied alternating current (AC) field. The imaginary part of the electric modulus shows obvious peaks known as conduction relaxation peaks.

10.
Polymers (Basel) ; 12(6)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599794

RESUMO

This report presents the preparation and characterizations of solid biopolymer blend electrolyte films of chitosan as cationic polysaccharide and anionic dextran (CS: Dextran) doped with ammonium iodide (NH4I) to be utilized as electrolyte and electrode separator in electrical double-layer capacitor (EDLC) devices. FTIR and XRD techniques were used to study the structural behavior of the films. From the FTIR band analysis, shifting and broadening of the bands were observed with increasing salt concentration. The XRD analysis indicates amorphousness of the blended electrolyte samples whereby the peaks underwent broadening. The analysis of the impedance spectra emphasized that incorporation of 40 wt.% of NH4I salt into polymer electrolyte exhibited a relatively high conductivity (5.16 × 10-3 S/cm). The transference number measurement (TNM) confirmed that ion (tion = 0.928) is the main charge carriers in the conduction process. The linear sweep voltammetry (LSV) revealed the extent of durability of the relatively high conducting film which was 1.8 V. The mechanism of charge storage within the fabricated EDLC has been explained to be fully capacitive behavior with no redox peaks appearance in the cyclic voltammogram (CV). From this findings, four important parameters of the EDLC; specific capacitance, equivalent series resistance, energy density and power density were calculated as 67.5 F/g, 160 ohm, 7.59 Wh/kg and 520.8 W/kg, respectively.

11.
Int J Mol Sci ; 20(21)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652832

RESUMO

In this work, analysis of ion transport parameters of polymer blend electrolytes incorporated with magnesium trifluoromethanesulfonate (Mg(CF3SO3)2) was carried out by employing the Trukhan model. A solution cast technique was used to obtain the polymer blend electrolytes composed of chitosan (CS) and poly (2-ethyl-2-oxazoline) (POZ). From X-ray diffraction (XRD) patterns, improvement in amorphous phase for the blend samples has been observed in comparison to the pure state of CS. From impedance plot, bulk resistance (Rb) was found to decrease with increasing temperature. Based on direct current (DC) conductivity (σdc) patterns, considerations on the ion transport models of Arrhenius and Vogel-Tammann-Fulcher (VTF) were given. Analysis of the dielectric properties was carried out at different temperatures and the obtained results were linked to the ion transport mechanism. It is demonstrated in the real part of electrical modulus that chitosan-salt systems are extremely capacitive. The asymmetric peak of the imaginary part (Mi) of electric modulus indicated that there is non-Debye type of relaxation for ions. From frequency dependence of dielectric loss (ε″) and the imaginary part (Mi) of electric modulus, suitable coupling among polymer segmental and ionic motions was identified. Two techniques were used to analyze the viscoelastic relaxation dynamic of ions. The Trukhan model was used to determine the diffusion coefficient (D) by using the frequency related to peak frequencies and loss tangent maximum heights (tanδmax). The Einstein-Nernst equation was applied to determine the carrier number density (n) and mobility. The ion transport parameters, such as D, n and mobility (µ), at room temperature, were found to be 4 × 10-5 cm2/s, 3.4 × 1015 cm-3, and 1.2 × 10-4 cm2/Vs, respectively. Finally, it was shown that an increase in temperature can also cause these parameters to increase.


Assuntos
Quitosana/análogos & derivados , Poliaminas/química , Polieletrólitos/química , Elasticidade , Técnicas Eletroquímicas/métodos , Magnésio/química , Mesilatos/química , Viscosidade
12.
Biomolecules ; 9(7)2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323956

RESUMO

Polymer blend electrolytes based on chitosan: dextran (CS:Dext) incorporated with various amounts of ammonium fluoride (NH4F) with constant specific capacitance (12.4 F/g) and energy density over 100 cycles were prepared using a solution cast technique. The blend electrolyte samples exhibit broader amorphous humps in X-ray diffraction (XRD) spectra compared to pure CS:Dext film. The Fourier transform infrared (FTIR) study indicates the complex formation of the added ammonium salt with the polymer blend functional groups through the shifting and decrease in the intensity of FTIR bands. The impedance plots were used to determine the conductivity of the samples. The field emission scanning electron microscopy (FESEM) images support the conductivity behavior of the samples. The impedance plots were applied in the determination of the conductivity of the samples in which the relatively highest conductivity was gained to be 1 × 10-3 S/cm. The transference number measurement (TNM) of the conducting electrolyte was 0.88, which portrays the dominancy of ion in the conduction process. Linear sweep voltammetry (LSV) verified the chemical stability and showed it to be 1.7 V and an effective electrical double layer capacitor (EDLC) that is applicable in electrochemical devices. The performance of the EDLC cell was examined using both cyclic voltammetry and constant current charge-discharge techniques at ambient temperature. The semi-rectangular shape of the cyclic voltammetry (CV) plot and no redox peak was observed. The charge-discharge process of the fabricated EDLC is durable over 100 cycles with an equivalent circuit resistance and power density of 194.5 Ω and 428 W/kg, respectively. Two main outcomes, the specific capacitance and energy densities of 12.4 Farad/g and 1.4 Wh/kg, respectively, are almost constant over 100 cycles.


Assuntos
Quitosana/química , Dextranos/química , Técnicas Eletroquímicas , Polímeros/química , Prótons , Capacitância Elétrica , Eletrólitos
13.
Int J Mol Sci ; 20(13)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323971

RESUMO

Solid polymer blend electrolyte membranes (SPBEM) composed of chitosan and dextran with the incorporation of various amounts of lithium perchlorate (LiClO4) were synthesized. The complexation of the polymer blend electrolytes with the salt was examined using FTIR spectroscopy and X-ray diffraction (XRD). The morphology of the SPBEs was also investigated using field emission scanning electron microscopy (FESEM). The ion transport behavior of the membrane films was measured using impedance spectroscopy. The membrane with highest LiClO4 content was found to exhibit the highest conductivity of 5.16 × 10-3 S/cm. Ionic (ti) and electronic (te) transference numbers for the highest conducting electrolyte were found to be 0.98 and 0.02, respectively. Electrochemical stability was estimated from linear sweep voltammetry and found to be up to ~2.3V for the Li+ ion conducting electrolyte. The only existence of electrical double charging at the surface of electrodes was evidenced from the absence of peaks in cyclic voltammetry (CV) plot. The discharge slope was observed to be almost linear, confirming the capacitive behavior of the EDLC. The performance of synthesized EDLC was studied using CV and charge-discharge techniques. The highest specific capacitance was achieved to be 8.7 F·g-1 at 20th cycle. The efficiency (η) was observed to be at 92.8% and remained constant at 92.0% up to 100 cycles. The EDLC was considered to have a reasonable electrode-electrolyte contact, in which η exceeds 90.0%. It was determined that equivalent series resistance (Resr) is quite low and varies from 150 to 180 Ω over the 100 cycles. Energy density (Ed) was found to be 1.21 Wh·kg-1 at the 1st cycle and then remained stable at 0.86 Wh·kg-1 up to 100 cycles. The interesting observation is that the value of Pd increases back to 685 W·kg-1 up to 80 cycles.


Assuntos
Quitosana/química , Eletrólitos/química , Polímeros/química , Eletroquímica , Íons/química , Difração de Raios X
14.
Nanomaterials (Basel) ; 9(2)2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30736346

RESUMO

: In this work the influence of carbon nano-dots (CNDs) on absorption of ultra violet (UV) spectra in hybrid PVA based composites was studied. The FTIR results reveal the complex formation between PVA and CNDs. The shifting was observed in XRD spectrum of PVA:CNDs composites compared to pure PVA. The Debye-Scherrer formula was used to calculate the crystallite size of CNDs and crystalline phases of pure PVA and PVA:CNDs composites. The FESEM images emphasized the presence and dispersion of C-dots on the surface of the composite samples. From the images, a strong and clear absorption was noticed in the spectra. The strong absorption that appeared peaks at 280 nm and 430 nm can be ascribed to the n-π* and π-π* transitions, respectively. The absorption edge shifted to lower photon energy sides with increasing CNDs. The luminescence behavior of PVA:CNDs composite was confirmed using digital and photo luminescence (PL) measurements. The optical dielectric constant which is related to the density of states was studied and the optical band gap was characterized accurately using optical dielectric loss parameter. The Taucs model was used to determine the type of electronic transition in the samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA