Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ADMET DMPK ; 12(2): 319-334, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720926

RESUMO

Background and purpose: In this study, we present an electrochemical sensor for the detection of oxypeucedanin (Oxyp) and prantschimgin (Pra), two natural furanocoumarin derivatives. The determination of the effects of these molecules on DNA is important to be potential drug candidates. Our research focused on exploring the electrochemical behaviour of these compounds and their interaction with DNA. Experimental approach: The electrochemical properties of Oxyp and Pra were systematically analyzed by evaluating their oxidation currents. Changes in the oxidation currents and peak potentials of guanine bases were monitored before and after interaction in the solution phase and at the electrode surface. Key results: The limit of detection (LOD) and limit of quantitation (LOQ) for Oxyp were determined to be 1.3 and 4.3 µg/mL, respectively. For Pra, the LOD and LOQ were found to be 20 and 68 µg/mL, respectively. Stability studies demonstrated that the Oxyp solution retained its oxidation capacity for over a month, whereas the Pra solution retained its oxidation capacity for nearly 120 min. Our findings suggest that Oxyp interacts with dsDNA, potentially through electrostatic interactions, showing promise as a potential drug candidate targeting DNA. On the other hand, the interaction of Pra with dsDNA requires further exploration to fully understand its mode of action. Conclusion: The electrochemical sensor developed in this study provides a reliable and efficient method for detecting and analysing the interaction of these natural compounds with dsDNA. Our research contributes to advancing the understanding of the interaction between natural furanocoumarins and dsDNA, laying the groundwork for the design and development of novel and effective DNA-targeted drugs.

2.
Turk J Pharm Sci ; 21(2): 113-124, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742813

RESUMO

Objectives: Triazolopyrimidinones are compounds used in medicinal chemistry. In this study, three novel triazolopyrimidinone derivatives were synthesized as drug candidates: (5-(chloromethyl)-2-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7(3H)-one) (S1-TP), 2-(4-methoxyphenyl)-5-(piperidinomethyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7(3H)-one) (S2-TP), and 2-(4-methoxyphenyl)-5-(morpholinomethyl)-[1,2,4]triazolo[1,5-a] pyrimidin-7(3H)-one) (S3-TP). Their electrochemical properties were investigated for the first time using voltammetric techniques on carbon graphite electrodes. Moreover, stability tests for each drug candidate were performed on different days. After revealing the electrochemical properties of the drug candidates, their effect on double-stranded (ds) DNA was examined by measuring the oxidation currents of the guanine of dsDNA before and after the interaction. Materials and Methods: An electrochemical setup that included a pencil graphite electrode as the working electrode, an Ag/AgCl reference electrode, and a platinum wire as the auxiliary electrode was used in this study. Experiments for optimum pH, scan rate, and concentration of drug candidates were conducted. The interaction between Ss-TP and dsDNA was evaluated using differential pulse voltammetry. The stability of each drug candidate was tested on various days. Results: A comprehensive characterization of the S1-TP, S2-TP, and S3-TP compounds was performed for the first time. This study showed that the electrochemical oxidation of S1-TP and S2-TP was irreversible and diffusion-controlled. In addition, the transfer of electrons in S3-TP was controlled by adsorption. The interaction between Ss-TP and dsDNA resulted in notable changes in the peak potentialof dsDNA. The dsDNA peak potential shifted negatively after interaction with S1-TP, S2-TP, and S3-TP. Under optimum conditions, the detection limits for S1-TP, S2-TP, and S3-TP were 1.5 µg/mL, 1.0 µg/mL, and 2.0 µg/mL, respectively. Conclusion: From our experimental data, we concluded that these molecules can be used as drug molecules because of their remarkable effects on DNA.

3.
Colloids Surf B Biointerfaces ; 211: 112282, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34915301

RESUMO

In this article, we introduced an electrochemical biosensor employing graphite electrodes (GE) decorated with Nickel ferrite (NiFe2O4) nanoparticles for nucleic acid detection. NiFe2O4 nanoparticles in a narrow size distribution were synthesized with co-precipitation technique. Their chemical and crystallographic properties were characterized with FTIR and X-ray spectroscopies. Nanoparticle size distribution and hydrodynamic diameter were determined with particle size analyzer. Elemental content and purity of nanoparticles were analyzed with EDX analysis. Our analyses showed a diameter of ~10 nm for NiFe2O4 nanoparticles. Electrochemical properties of NiFe2O4 nanoparticles were examined with different analysis methods. Conductivity properties of NiFe2O4 nanoparticles were investigated with Cyclic Voltammetry (CV), which confirmed that nanoparticles on GE surface have a high surface area and conductivity. More importantly, in this article, the interactions between NiFe2O4 nanoparticles and double stranded DNA (dsDNA), single stranded DNA (ssDNA), and RNA were for the first time examined using Differential Pulse Voltammetry (DPV), CV, and Electrochemical Impedance Spectroscopy (EIS). Oxidation peak currents of NiFe2O4 nanoparticles and guanine bases of dsDNA, ssDNA, and RNA showed that NiFe2O4 nanoparticles effectively interacts with nucleic acids via an electrostatic mode.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Ácidos Nucleicos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Compostos Férricos/química , Nanopartículas/química , Níquel
4.
Turk J Pharm Sci ; 18(5): 645-651, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34719193

RESUMO

Objectives: Linagliptin (Lin) is a drug used in treatment of type 2 diabetes mellitus. In this study, the electrochemical detection of Lin and its interaction with DNA was analyzed for the first time using voltammetric methods by measuring the oxidation currents of the adenine bases of DNA before and after the interaction. In addition, the electrochemical properties of the Lin were studied. Materials and Methods: The interaction between Lin and DNA was evaluated using differential pulse voltammetry. A three-electrode system comprising of a pencil graphite electrode as the working electrode, reference electrode (Ag/AgCl), and platinum wire as the auxiliary electrode was used in the electrochemical studies. Experimental conditions, such as the concentration, pH of the supporting electrolyte, and immobilization time were optimized to obtain maximum analytical signals. Results: The adenine bases of DNA were evaluated as an analytical signal obtained at approximately +1.2 V vs. Ag/AgCl. After the Lin-DNA interaction, the oxidation currents of adenine decreased as proof of interaction. No reports have been published on Lin interacting with DNA. Based on our results, a diffusion-controlled irreversible redox process involving independent oxidation was revealed for Lin. Under optimum conditions, the detection limit was 6.7 µg/mL for DNA and 21.5 µg/mL for Lin. Based on the observations, Lin has a toxic effect on DNA. Conclusion: We successfully demonstrated that Lin interacts with DNA, and its influence on DNA could play a vital role in the medical effect of the drug.

5.
J Electroanal Chem (Lausanne) ; 882: 114989, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33456428

RESUMO

Detection of pathogens, e.g., bacteria and viruses, is still a big challenge in analytical medicine due to their vast number and variety. Developing strategies for rapid, inexpensive, specific, and sensitive detection of the pathogens using nanomaterials, integrating with microfluidics devices, amplification methods, or even combining these strategies have received significant attention. Especially, after the health-threatening COVID-19 outbreak, rapid and sensitive detection of pathogens became very critical. Detection of pathogens could be realized with electrochemical, optical, mass sensitive, or thermal methods. Among them, electrochemical methods are very promising by bringing different advantages, i.e., they exhibit more versatile detection schemes and real-time quantification as well as label-free measurements, which provides a broader application perspective. In this review, we discuss the recent advances for the detection of bacteria and viruses using electrochemical biosensors. Moreover, electrochemical biosensors for pathogen detection were broadly reviewed in terms of analyte, bio-recognition and transduction elements. Different fabrication techniques, detection principles, and applications of various pathogens with the electrochemical biosensors were also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA