Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 11(4)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806132

RESUMO

The aim of this study was to reveal cranio-spinal differences between skeletal classification using convolutional neural networks (CNNs). Transverse and longitudinal cephalometric images of 832 patients were used for training and testing of CNNs (365 males and 467 females). Labeling was performed such that the jawbone was sufficiently masked, while the parts other than the jawbone were minimally masked. DenseNet was used as the feature extractor. Five random sampling crossvalidations were performed for two datasets. The average and maximum accuracy of the five crossvalidations were 90.43% and 92.54% for test 1 (evaluation of the entire posterior-anterior (PA) and lateral cephalometric images) and 88.17% and 88.70% for test 2 (evaluation of the PA and lateral cephalometric images obscuring the mandible). In this study, we found that even when jawbones of class I (normal mandible), class II (retrognathism), and class III (prognathism) are masked, their identification is possible through deep learning applied only in the cranio-spinal area. This suggests that cranio-spinal differences between each class exist.

2.
BMC Oral Health ; 21(1): 130, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33736627

RESUMO

BACKGROUND: Posteroanterior and lateral cephalogram have been widely used for evaluating the necessity of orthognathic surgery. The purpose of this study was to develop a deep learning network to automatically predict the need for orthodontic surgery using cephalogram. METHODS: The cephalograms of 840 patients (Class ll: 244, Class lll: 447, Facial asymmetry: 149) complaining about dentofacial dysmorphosis and/or a malocclusion were included. Patients who did not require orthognathic surgery were classified as Group I (622 patients-Class ll: 221, Class lll: 312, Facial asymmetry: 89). Group II (218 patients-Class ll: 23, Class lll: 135, Facial asymmetry: 60) was set for cases requiring surgery. A dataset was extracted using random sampling and was composed of training, validation, and test sets. The ratio of the sets was 4:1:5. PyTorch was used as the framework for the experiment. RESULTS: Subsequently, 394 out of a total of 413 test data were properly classified. The accuracy, sensitivity, and specificity were 0.954, 0.844, and 0.993, respectively. CONCLUSION: It was found that a convolutional neural network can determine the need for orthognathic surgery with relative accuracy when using cephalogram.


Assuntos
Aprendizado Profundo , Má Oclusão Classe III de Angle , Má Oclusão , Cirurgia Ortognática , Procedimentos Cirúrgicos Ortognáticos , Cefalometria , Humanos , Má Oclusão Classe III de Angle/diagnóstico por imagem , Má Oclusão Classe III de Angle/cirurgia , República da Coreia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA