Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 801: 149682, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34418624

RESUMO

Mangroves are increasingly recognized as an important component of regional and global carbon cycles especially for their high carbon storage capacity. Global estimation of mangrove soil organic carbon (SOC) storage requires detailed regional studies, but estimates of SOC data in deep soils are currently missing in many countries. Furthermore, little is explored on the molecular composition of mangrove SOC. Here, we assessed the SOC stock in a Trat mangrove forest (Thailand) by collecting deep soils (3.5 m) and analyzed the SOC composition for better understanding its potential sources and influencing factors. The Trat mangrove forest had four times higher SOC stock than has been considered for Thai mangrove forests, with the per-area SOC stock of nearly 1000 Mg C ha-1 which rivals that of Indo-Pacific mangrove forests. The SOC composition analyzed by C/N ratios and spectroscopic techniques differed by tree species and depth. Compositional data principal component analysis revealed that a biological factor (root abundance) had stronger influences than the soil texture (sand versus clay) on the abundance and composition of mangrove SOC. Although surface soil (~1 m) C density was largely controlled by the recent vegetation, deep soil C density reflected other historical processes. This study contributed to a refined estimate of Thailand mangrove SOC stock and revealed that factors influencing SOC abundance and composition differ by tree species and depth.


Assuntos
Carbono , Solo , Carbono/análise , Ecossistema , Florestas , Tailândia , Áreas Alagadas
2.
Chemosphere ; 177: 51-55, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28282623

RESUMO

Although mangrove forests are one of the most well-known soil organic carbon (SOC) sinks, the mechanism underlying SOC accumulation is relatively unknown. High net primary production (NPP) along with the typical bottom-heavy biomass allocation and low soil respiration (SR) have been considered to be responsible for SOC accumulation. However, an emerging paradigm postulates that SR is severely underestimated because of the leakage of dissolved inorganic carbon (DIC) in groundwater. Here we propose a simple yet unique mechanism for SOC accumulation in mangrove soils. We conducted sequential extraction of water extractable organic matter (WEOM) from mangrove soils using ultrapure water and artificial seawater, respectively. A sharp increase in humic substances (HS) concentration was observed only in the case of ultrapure water, along with a decline in salinity. Extracted WEOM was colloidal, and ≤70% of it re-precipitated by the addition of artificial seawater. These results strongly suggest that HS is selectively flocculated and maintained in the mangrove soils because of high salinity. Because sea salts are a characteristic of any mangrove forest, high salinity may be one of mechanisms underlying SOC accumulation in mangrove soils.


Assuntos
Biomassa , Carbono/química , Substâncias Húmicas/análise , Salinidade , Água do Mar/química , Poluentes do Solo/análise , Áreas Alagadas , Condutividade Elétrica , Rios , Sais/química , Solo , Poluentes Químicos da Água/análise
3.
J Plant Physiol ; 166(16): 1786-800, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19535167

RESUMO

The halophytic Kandelia candel and Bruguiera gymnorrhiza are ideal model for studying the molecular mechanisms of salinity tolerance in mangrove plants. The correlation between mRNA expression of four oxidosqualene cyclase (OSC) genes namely, KcMS multifunctional terpenoid synthase and KcCAS cyloartenol synthase (K. candel), BgbAS beta-amyrin synthase and BgLUS lupeol synthase (B. gymnorrhiza) and salt concentration was examined. mRNA level of KcMS was increased with salt concentration in both roots and leaves of K. candel. Similarly, salt stress increased the mRNA levels of BgLUS and BgbAS in the root of B. gymnorrhiza. This result suggests that the function of terpenoids in root is associated with the salt stress. In contrast to these observations, the mRNA level of KcCAS was not modulated by salt stress in the roots, and decreased in the leaves. These results therefore suggest that the terpenoids but not phytosterols play an important role to cope with the salt stress in mangrove root. The content and proportion of beta-amyrin and lupeol increased with salinity in the root of K. candel and B. gymnorrhiza, providing additional evidence for the protective role of terpenoids. However, beta-amyrin and lupeol in B. gymnorrhiza leaves decreased with salt concentration, suggesting that the physiological significance for the terpenoids in the leaf may differ from that for the root.


Assuntos
Ligases/genética , RNA Mensageiro/genética , Rhizophoraceae/metabolismo , Cloreto de Sódio , Estresse Fisiológico , Terpenos/metabolismo , Sequência de Bases , Clonagem Molecular , Primers do DNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rhizophoraceae/enzimologia , Rhizophoraceae/fisiologia
4.
Waste Manag Res ; 26(6): 559-65, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19039073

RESUMO

A study was conducted to assess the characteristics and the prospective utilization of oil palm waste (OP) and synthetic zeolite (SZ) developed by coal fly ash, as an alternative substrate to peat and commercial perlite for lettuce (Lactuca sativa L.) production. The SZ, OP, sphagnum peat (PE), perlite (PL) and two different SZ-OP mixtures (v/v) at the ratio of 1 : 3 and 1 : 10 were utilized as the substrates under this study. The substrates formulated by mixing SZ with OP at the ratio of 1 : 3 and 1 : 10 showed improved substrate physical and chemical properties such as air space, bulk density, particle density, water-holding capacity, pH and electrical conductivity (EC), which were in the ideal substrate range when compared with PL. Furthermore, the water-holding capacity of the substrate having a 1 : 10 mixing ratio of SZ with OP was higher than that of the PL by 28.23%, whereas the bulk density was lower than that of PL by 35%. A greenhouse experiment was carried out to assess the influence of the substrates on the growth and development of lettuce. The shoot fresh weight, shoot dry weight, root fresh weight, root dry weight and number of leaves per plant of the lettuce grown in the 1 : 10 mixing ratio of SZ and OP were the highest, which showed increased values compared with that of PL by 11.56, 9.77, 3.48, 17.35 and 16.53%, respectively. The shoot fresh weight, shoot dry weight, root fresh weight, root dry weight and number of leaves per plant of the lettuce grown in the 1 : 10 mixing ratio of SZ and OP showed increased percentages compared with that of PE by 12.12, 11.37, 3.74, 23.66 and 17.50%, respectively. In addition, the growth and yield parameters of lettuce grown in the 1 : 3 mixing ratio and the OP did not show any significant difference with PL and PE but differed from the 1 : 10 mixing ratio. The results of the study suggest that the SZ-OP-based substrates and OP can be successfully utilized as alternatives to the commercial perlite and to substitute the conventional peat substrate for lettuce cultivation. In addition, this can be proposed as an alternative waste management practice.


Assuntos
Arecaceae , Resíduos Industriais , Lactuca/crescimento & desenvolvimento , Óleos de Plantas , Eliminação de Resíduos/métodos , Zeolitas/química , Conservação dos Recursos Naturais/métodos , Óleo de Palmeira , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA