Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 19(1): 387-98, 2011 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-21263578

RESUMO

A microscope-based label-free microfluidic cytometer capable of acquiring two dimensional light scatter patterns from single cells, pattern analysis of which determines cellular information such as cell size, orientation and inner nanostructure, was developed. Finite-difference time-domain numerical simulations compared favorably with experimental scatter patterns from micrometer-sized beads and cells. The device was capable of obtaining light scattering patterns from the smallest mature blood cells (platelets) and cord blood hematopoietic stem/progenitor cells (CD34 + cells) and myeloid precursor cells. The potential for evaluation of cells using this label-free microfluidic cytometric technique was discussed.


Assuntos
Citometria de Fluxo/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Microscopia/instrumentação , Separação Celular , Tamanho Celular , Sangue Fetal/citologia , Humanos , Técnicas In Vitro , Recém-Nascido , Fenômenos Ópticos , Espalhamento de Radiação
2.
J Phys Chem B ; 109(24): 11996-2002, 2005 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-16852480

RESUMO

Laser-induced desorption of self-assembled monolayers (SAMs) from gold surfaces within context of the direct laser patterning methodology was investigated through combining results of a heat diffusion thermal model with desorption kinetics of alkanethiol SAMs. It was found that contrast plots of experimental scanning electron microscopy (SEM) images, which are correlated to surface coverage of SAMs desorbed after laser irradiation, agreed with the theoretically predicted surface composition of SAMs. The surface composition of SAM was then interpreted in terms of the wetting property of the resulting surface. The effect of incident laser beam power and size on the final spatial coverage of SAMs on the surface and feature sizes was investigated both experimentally and by modeling. Theoretical modeling and experimental evidence showed that the resulting feature sizes are wider when the surface is heated by a laser of higher power. Increasing the laser beam size results in broadening of feature sizes. Considering the correlation of the theoretical and experimental results, we concluded that the feature sizes are controllable in a predictable way (using the presented thermal-kinetics model) through varying laser beam power and beam size.

3.
Langmuir ; 20(7): 2667-76, 2004 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-15835135

RESUMO

The development of a methodology to manipulate surface properties of a self-assembled monolayer (SAM) of alkanethiol on a gold film using direct laser patterning is the objective of this paper. The present study demonstrates proof of the concept for the feasibility of laser patterning monolayers and outlines theoretical modeling of the process to predict the resulting feature size. This approach is unique in that it eliminates the need for photolithography, is noncontact, and can be extended to other systems such as SAMs on silicon wafers or potentially polymeric substrates. A homogeneous SAM made of 1-hexadecanethiol is formed on a 300-A sputtered film of gold (supported by a soda lime glass substrate). Localized regions are then desorbed by scanning the focal spot of a 488-nm continuous-wave argon ion laser beam under a nitrogen atmosphere. The desorption occurs as a result of a high substrate temperature produced by the moving laser beam with a Gaussian spatial profile at a constant speed of 200 microm/s. After completing the scans, the sample is dipped into a dilute solution of 16-mercaptohexadecanoic acid and a hydrophilic monolayer self-assembles along the previously irradiated regions. The resultant lines are viewed, and line widths are measured using both wetting with tridecane under a light microscope and scanning electron microscopy. Using the direct laser patterning method, we have produced straight line patterns with widths of 28-170 microm. A thermal model was constructed to predict the line width of the desorbed monolayer. The effect of the laser power, beam waist, and temperature dependence of the substrate conductivity on the theoretical predictions is considered. It is shown that the theoretical predictions are in good agreement with the experimental results, and, thus, the model can effectively be used to predict experimental results.


Assuntos
Ouro/química , Lasers , Compostos de Sulfidrila/química , Adsorção , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA