Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Brain Commun ; 6(5): fcae293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39291168

RESUMO

Magnetic resonance-guided, focused ultrasound thalamotomy is a neurosurgical treatment for refractory essential tremor. This study examined cognitive outcomes following unilateral magnetic resonance-guided, focused ultrasound thalamotomy, targeting the ventral intermediate nucleus of the thalamus for essential tremor. The research was conducted at two sites: Sunnybrook Research Institute in Toronto, Canada, and West Virginia University School of Medicine Rockefeller Neuroscience Institute in West Virginia, USA. The study focused on cognitive changes at both the group and individual levels. Patients with refractory essential tremor completed cognitive testing before and after magnetic resonance-guided, focused ultrasound thalamotomy at both sites. The cognitive testing assessed domains of attention, processing speed, working memory, executive function, language and learning/memory. Postoperative changes in cognition were examined using paired t-tests and Wilcoxon signed-rank tests, as appropriate. Reliable change indices were calculated to assess clinically significant changes at the individual level. A total of 33 patients from Toronto and 22 patients from West Virginia were included. Following magnetic resonance-guided, focused ultrasound thalamotomy, there was a significant reduction in tremor severity in both cohorts. At the group level, there were no significant declines in postoperative cognitive performance in either cohort. The reliable change analyses revealed some variability at the individual level, with most patients maintaining stable performance or showing improvement. Taken together, the results from these two independent cohorts demonstrate that unilateral magnetic resonance-guided, focused ultrasound thalamotomy significantly reduces tremor severity without negatively impacting cognition at both the group and individual levels, highlighting the cognitive safety of magnetic resonance-guided focused ultrasound thalamotomy for essential tremor.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39024077

RESUMO

Transcranial-focused ultrasound (tFUS) procedures such as neuromodulation and blood-brain barrier (BBB) opening require precise focus placement within the brain. MRI is currently the most reliable tool for focus localization but can be prohibitive for procedures requiring recurrent therapies. We designed, fabricated, and characterized a patient-specific, 3-D-printed, stereotactic frame for repeated tFUS therapy. The frame is compact, with minimal footprint, can be removed and re-secured between treatments while maintaining sub-mm accuracy, and will allow for precise and repeatable transcranial FUS treatment without the need for MR-guidance following the initial calibration scan. Focus localization and repeatability were assessed via MR-thermometry and MR-acoustic radiation force imaging (ARFI) on an ex vivo skull phantom and in vivo nonhuman primates (NHPs), respectively. Focal localization, registration, steering, and re-steering were accomplished during the initial MRI calibration scan session. Keeping steering coordinates fixed in subsequent therapy and imaging sessions, we found good agreement between steered foci and the intended target, with target registration error (TRE) of 1.2 ± 0.3 ( n = 4 , ex vivo) and 1.0 ± 0.5 ( n = 3 , in vivo) mm. Focus position (steered and non-steered) was consistent, with sub-mm variation in each dimension between studies. Our 3-D-printed, patient-specific stereotactic frame can reliably position and orient the ultrasound transducer for repeated targeting of brain regions using a single MR-based calibration. The compact frame allows for high-precision tFUS to be carried out outside the magnet and could help reduce the cost of tFUS treatments where repeated application of an ultrasound focus is required with high precision.


Assuntos
Desenho de Equipamento , Imagens de Fantasmas , Animais , Humanos , Terapia por Ultrassom/métodos , Terapia por Ultrassom/instrumentação , Imageamento por Ressonância Magnética/métodos , Técnicas Estereotáxicas/instrumentação , Impressão Tridimensional , Encéfalo/diagnóstico por imagem , Macaca mulatta
3.
BMC Neurol ; 24(1): 247, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020271

RESUMO

BACKGROUND: The harlequin syndrome is a rare disorder of the autonomic nervous system characterized by unilateral diminished flushing and sweating of the face following exposure to heat or physical activity. It results from sympathetic dysfunction and most commonly occurs idiopathically. A secondary development due to an underlying pathology (e.g., carotid artery dissection, tumors) must be excluded at first appearance. There is evidence that the cranial autonomic system is involved in the pathophysiology of trigeminal autonomic headaches like hemicrania continua. Therefore, an overlap in the pathophysiology of harlequin syndrome and trigeminal autonomic headache disorders seems plausible. However, the association of a harlequin syndrome with hemicrania continua was never reported. CASE PRESENTATION: This work describes the case of a 42-year-old female patient presenting to our headache unit. The patient reported persisting unilateral headache of the right side of dragging or squeezing character accompanied by trigeminal autonomic symptoms, including lacrimation, nasal congestion, conjunctival injection and Horner's syndrome, and was responsive to treatment with 75mg/d indomethacin. Five months after the initial consultation, the patient noted that the upper right quadrant of her face was pale after jogging. A harlequin syndrome was diagnosed. Further, she developed a short-lasting, bilateral headache of pulsatile character during strenuous exercise consistent with exertional headache. Comprehensive diagnostic evaluations, encompassing cranial and cervical MRI scans, laboratory tests, and biopsies, culminated in the diagnosis of Sjögren's syndrome. This finding suggests that the trigemino-autonomic dysfunction may either be idiopathic or a direct manifestation of Sjögren's syndrome. CONCLUSIONS: This report documents the case of a rare combination of a headache resembling probable hemicrania continua and the harlequin syndrome (and even exertional headache). It illustrates the underlying anatomy of the autonomic nervous system in a clinical context and emphasizes the hypothesis of a pathophysiological link between abnormal sympathetic activity and trigeminal autonomic headaches.


Assuntos
Doenças do Sistema Nervoso Autônomo , Rubor , Hipo-Hidrose , Humanos , Feminino , Adulto , Rubor/diagnóstico , Rubor/etiologia , Hipo-Hidrose/diagnóstico , Hipo-Hidrose/complicações , Hipo-Hidrose/fisiopatologia , Doenças do Sistema Nervoso Autônomo/diagnóstico , Doenças do Sistema Nervoso Autônomo/complicações , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Cefaleia/etiologia , Cefaleia/diagnóstico , Cefaleia/fisiopatologia
5.
J Neurosurg Spine ; 41(2): 292-304, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38728765

RESUMO

OBJECTIVE: The goal of this study was to assess the safety of mapping spinal cord locomotor networks using penetrating stimulation microelectrodes in Yucatan minipigs (YMPs) as a clinically translational animal model. METHODS: Eleven YMPs were trained to walk up and down a straight line. Motion capture was performed, and electromyographic (EMG) activity of hindlimb muscles was recorded during overground walking. The YMPs underwent a laminectomy and durotomy to expose the lumbar spinal cord. Using an ultrasound-guided stereotaxic frame, microelectrodes were inserted into the spinal cord in 8 animals. Pial cuts were made to prevent tissue dimpling before microelectrode insertion. Different locations within the lumbar enlargement were electrically stimulated to map the locomotor networks. The remaining 3 YMPs served as sham controls, receiving the laminectomy, durotomy, and pial cuts but not microelectrode insertion. The Porcine Thoracic Injury Behavioral Scale (PTIBS) and hindlimb reflex assessment results were recorded for 4 weeks postoperatively. Overground gait kinematics and hindlimb EMG activity were recorded again at weeks 3 and 4 postoperatively and compared with preoperative measures. The animals were euthanized at the end of week 4, and the lumbar spinal cords were extracted and preserved for immunohistochemical analysis. RESULTS: All YMPs showed transient deficits in hindlimb function postoperatively. Except for 1 YMP in the experimental group, all animals regained normal ambulation and balance (PTIBS score 10) at the end of weeks 3 and 4. One animal in the experimental group showed gait and balance deficits by week 4 (PTIBS score 4). This animal was excluded from the kinematics and EMG analyses. Overground gait kinematic measures and EMG activity showed no significant (p > 0.05) differences between preoperative and postoperative values, and between the experimental and sham groups. Less than 5% of electrode tracks were visible in the tissue analysis of the animals in the experimental group. There was no statistically significant difference in damage caused by pial cuts between the experimental and sham groups. Tissue damage due to the pial cuts was more frequently observed in immunohistochemical analyses than microelectrode tracks. CONCLUSIONS: These findings suggest that mapping spinal locomotor networks in porcine models can be performed safely, without lasting damage to the spinal cord.


Assuntos
Eletromiografia , Microeletrodos , Medula Espinal , Porco Miniatura , Animais , Suínos , Medula Espinal/cirurgia , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Membro Posterior , Marcha/fisiologia , Feminino , Estimulação Elétrica/métodos , Modelos Animais , Fenômenos Biomecânicos/fisiologia
6.
Bioelectron Med ; 10(1): 8, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475923

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that causes persistent synovitis, bone damage, and progressive joint destruction. Neuroimmune modulation through electrical stimulation of the vagus nerve activates the inflammatory reflex and has been shown to inhibit the production and release of inflammatory cytokines and decrease clinical signs and symptoms in RA. The RESET-RA study was designed to determine the safety and efficacy of an active implantable device for treating RA. METHODS: The RESET-RA study is a randomized, double-blind, sham-controlled, multi-center, two-stage pivotal trial that enrolled patients with moderate-to-severe RA who were incomplete responders or intolerant to at least one biologic or targeted synthetic disease-modifying anti-rheumatic drug. A neuroimmune modulation device (SetPoint Medical, Valencia, CA) was implanted on the left cervical vagus nerve within the carotid sheath in all patients. Following post-surgical clearance, patients were randomly assigned (1:1) to active stimulation or non-active (control) stimulation for 1 min once per day. A predefined blinded interim analysis was performed in patients enrolled in the study's initial stage (Stage 1) that included demographics, enrollment rates, device implantation rates, and safety of the surgical procedure, device, and stimulation over 12 weeks of treatment. RESULTS: Sixty patients were implanted during Stage 1 of the study. All device implant procedures were completed without intraoperative complications, infections, or surgical revisions. No unanticipated adverse events were reported during the perioperative period and at the end of 12 weeks of follow-up. No study discontinuations were due to adverse events, and no serious adverse events were related to the device or stimulation. Two serious adverse events were related to the implantation procedure: vocal cord paresis and prolonged hoarseness. These were reported in two patients and are known complications of surgical implantation procedures with vagus nerve stimulation devices. The adverse event of vocal cord paresis resolved after vocal cord augmentation injections with filler and speech therapy. The prolonged hoarseness had improved with speech therapy, but mild hoarseness persists. CONCLUSIONS: The surgical procedures for implantation of the novel neuroimmune modulation device for the treatment of RA were safe, and the device and its use were well tolerated. TRIAL REGISTRATION: NCT04539964; August 31, 2020.

7.
J Neurosurg ; 141(1): 230-240, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335523

RESUMO

OBJECTIVE: Subthalamic nucleus (STN) and globus pallidus internus (GPI) deep brain stimulation (DBS) effectively treat motor symptoms in Parkinson's disease (PD) but may be associated with cognitive and psychiatric changes in some patients. Evaluation of changes in cognitive and psychiatric symptoms following DBS is complicated by changes in these symptoms that occur as part of the natural disease course. The aim of this study was to evaluate whether electrode position was associated with changes in neurocognitive symptoms in patients who underwent STN and GPI DBS. METHODS: A single-institution retrospective cohort study was conducted on patients with PD who underwent DBS from 2008 to 2019. Cognitive and psychiatric outcomes included Beck Depression Inventory II (BDI-II) score, presence of impulsive-compulsive behavior (ICB), Mini-Mental State Examination (MMSE) score, and overall cognitive status grade determined by comprehensive neuropsychology testing (normal, mild impairment, moderate impairment, and dementia). Pre- and postoperative comparisons were performed using a Wilcoxon signed-rank test or paired t-test. Patients with and without cognitive decline were compared using a Mann-Whitney U-test or unpaired t-test. A chi-square test was used for categorical comparisons. RESULTS: One hundred thirty patients were included (mean age 62.5 ± 7.9 years). At a mean postoperative follow-up from DBS of 13.0 ± 12.7 (range 6-66) months, there was an improvement in ICB (26.3% preoperatively vs 15.0% postoperatively, p = 0.017), but a decline in MMSE score (28.6 ± 1.6 vs 27.6 ± 2.0, p < 0.001) and overall cognitive status (normal: 66.2% vs 39.2%; mild: 12.3% vs 17.7%; moderate: 21.5% vs 33.1%; dementia: 0.0% vs 10.0%; p < 0.001). Patients undergoing STN DBS had a worse decline in overall cognitive status than patients who underwent GPI DBS (p = 0.006). Postoperative cognitive decline was associated with a more medial electrode position only for patients who underwent STN DBS. CONCLUSIONS: Cognitive change was observed in some patients with PD who underwent both GPI and STN DBS, likely due partly to underlying disease progression. Compared with GPI DBS, STN DBS was associated with a greater likelihood of cognitive decline. In STN but not GPI DBS, cognitive decline was associated with medialized electrode position, suggesting modulation of nonmotor STN divisions may contribute to cognitive changes following STN DBS.


Assuntos
Estimulação Encefálica Profunda , Globo Pálido , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Estimulação Encefálica Profunda/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Doença de Parkinson/terapia , Doença de Parkinson/psicologia , Doença de Parkinson/cirurgia , Estudos Retrospectivos , Idoso , Núcleo Subtalâmico/cirurgia , Globo Pálido/cirurgia , Resultado do Tratamento , Cognição/fisiologia , Eletrodos Implantados , Disfunção Cognitiva/etiologia , Estudos de Coortes , Testes Neuropsicológicos
9.
Cancers (Basel) ; 15(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067376

RESUMO

Night shift work has been associated with breast, prostate, and colorectal cancer, but evidence on other types of cancer is limited. We prospectively evaluated the association of rotating night shift work, sleep duration, and sleep difficulty with thyroid cancer risk in the Nurses' Health Study 2 (NHS2). We assessed rotating night shift work duration (years) at baseline and throughout follow-up (1989-2015) and sleep characteristics in 2001. Cox proportional hazard models, adjusted for potential confounders, were used to calculate hazard ratios (HR) and 95% confidence intervals (CI) for (a) shift work duration, (b) sleep duration, and (c) difficulty falling or staying asleep. We stratified the analyses of night shift work by sleep duration and sleep difficulty. Over 26 years of follow-up, 588 incident cases were identified among 114,534 women in the NHS2 cohort. We observed no association between night shift work and the risk of thyroid cancer. Difficulty falling or staying asleep was suggestively associated with a higher incidence of thyroid cancer when reported sometimes (HR 1.26, 95% CI 0.95, 1.66) and all or most of the time (HR 1.35, 95% CI 1.00, 1.81). Night shift workers (10+ years) with sleep difficulty all or most of the time (HR 1.47; 0.58-3.73) or with >7 h of sleep duration (HR 2.17; 95% CI, 1.21-3.92) had a higher risk of thyroid cancer. We found modest evidence for an increased risk of thyroid cancer in relation to sleep difficulty, which was more pronounced among night shift workers.

10.
J Neurol Neurosurg Psychiatry ; 95(1): 86-96, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37679029

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is commonly performed with patients awake to perform intraoperative microelectrode recordings and/or macrostimulation testing to guide final electrode placement. Supplemental information from atlas-based databases derived from prior patient data and visualised as efficacy heat maps transformed and overlaid onto preoperative MRIs can be used to guide preoperative target planning and intraoperative final positioning. Our quantitative analysis of intraoperative testing and corresponding changes made to final electrode positioning aims to highlight the value of intraoperative neurophysiological testing paired with image-based data to optimise final electrode positioning in a large patient cohort. METHODS: Data from 451 patients with movement disorders treated with 822 individual DBS leads at a single institution from 2011 to 2021 were included. Atlas-based data was used to guide surgical targeting. Intraoperative testing data and coordinate data were retrospectively obtained from a large patient database. Medical records were reviewed to obtain active contact usage and neurologist-defined outcomes at 1 year. RESULTS: Microelectrode recording firing profiles differ per track, per target and inform the locations where macrostimulation testing is performed. Macrostimulation performance correlates with the final electrode track chosen. Centroids of atlas-based efficacy heat maps per target were close in proximity to and may predict active contact usage at 1 year. Overall, patient outcomes at 1 year were improved for patients with better macrostimulation response. CONCLUSIONS: Atlas-based imaging data is beneficial for target planning and intraoperative guidance, and in conjunction with intraoperative neurophysiological testing during awake DBS can be used to individualize and optimise final electrode positioning, resulting in favourable outcomes.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Estimulação Encefálica Profunda/métodos , Estudos Retrospectivos , Vigília , Doença de Parkinson/cirurgia , Imageamento por Ressonância Magnética , Microeletrodos , Eletrodos Implantados
11.
J Clin Neurosci ; 115: 121-128, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549435

RESUMO

BACKGROUND: Essential tremor (ET) and Parkinson's disease (PD) are the most common tremor disorders and are common indications for deep brain stimulation (DBS). In some patients, PD and ET symptoms overlap and diagnosis can be challenging based on clinical criteria alone. The objective of this study was to identify structural brain differences between PD and ET DBS patients to help differentiate these disorders and improve our understanding of the different brain regions involved in these pathologic processes. METHODS: We included ET and PD patients scheduled to undergo DBS surgery in this observational study. Patients underwent 3T brain MRI while under general anesthesia as part of their procedure. Cortical thicknesses and subcortical volumes were quantified from T1-weighted images using automated multi-atlas segmentation. We used logistic regression analysis to identify brain regions associated with diagnosis of ET or PD. RESULTS: 149 ET and 265 PD patients were included. Smaller volumes in the pallidum and thalamus and reduced thickness in the anterior orbital gyrus, lateral orbital gyrus, and medial precentral gyrus were associated with greater odds of ET diagnosis. Conversely, reduced volumes in the caudate, amygdala, putamen, and basal forebrain, and reduced thickness in the orbital part of the inferior frontal gyrus, supramarginal gyrus, and posterior cingulate were associated with greater odds of PD diagnosis. CONCLUSIONS: These findings identify structural brain differences between PD and ET patients. These results expand our understanding of the different brain regions involved in these disorders and suggest that structural MRI may help to differentiate patients with these two disorders.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/terapia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Tremor/diagnóstico
12.
J Neurol Neurosurg Psychiatry ; 94(11): 879-886, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37336643

RESUMO

BACKGROUND: Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) is a minimally invasive alternative to surgical resection for drug-resistant mesial temporal lobe epilepsy (mTLE). Reported rates of seizure freedom are variable and long-term durability is largely unproven. Anterior temporal lobectomy (ATL) remains an option for patients with MRgLITT treatment failure. However, the safety and efficacy of this staged strategy is unknown. METHODS: This multicentre, retrospective cohort study included 268 patients consecutively treated with mesial temporal MRgLITT at 11 centres between 2012 and 2018. Seizure outcomes and complications of MRgLITT and any subsequent surgery are reported. Predictive value of preoperative variables for seizure outcome was assessed. RESULTS: Engel I seizure freedom was achieved in 55.8% (149/267) at 1 year, 52.5% (126/240) at 2 years and 49.3% (132/268) at the last follow-up ≥1 year (median 47 months). Engel I or II outcomes were achieved in 74.2% (198/267) at 1 year, 75.0% (180/240) at 2 years and 66.0% (177/268) at the last follow-up. Preoperative focal to bilateral tonic-clonic seizures were independently associated with seizure recurrence. Among patients with seizure recurrence, 14/21 (66.7%) became seizure-free after subsequent ATL and 5/10 (50%) after repeat MRgLITT at last follow-up≥1 year. CONCLUSIONS: MRgLITT is a viable treatment with durable outcomes for patients with drug-resistant mTLE evaluated at a comprehensive epilepsy centre. Although seizure freedom rates were lower than reported with ATL, this series represents the early experience of each centre and a heterogeneous cohort. ATL remains a safe and effective treatment for well-selected patients who fail MRgLITT.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Epilepsia , Terapia a Laser , Humanos , Epilepsia do Lobo Temporal/cirurgia , Estudos Retrospectivos , Convulsões/cirurgia , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia/cirurgia , Resultado do Tratamento , Imageamento por Ressonância Magnética , Lasers
13.
Parkinsonism Relat Disord ; 113: 105479, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37380539

RESUMO

INTRODUCTION: The pilot trial of deep brain stimulation (DBS) in early-stage Parkinson's disease (PD) randomized 30 patients (medication duration 0.5-4 years; without dyskinesia or motor fluctuations) to receive optimal drug therapy alone (early ODT) or subthalamic nucleus (STN) DBS plus ODT (early DBS + ODT). This study reports long-term neuropsychological outcomes from the early DBS pilot trial. METHODS: This is an extension of an earlier study that examined two-year neuropsychological outcomes in the pilot trial. The primary analysis was conducted on the five-year cohort (n = 28), and a secondary analysis was conducted on the 11-year cohort (n = 12). Linear mixed effects models for each analysis compared overall trend in outcomes for randomization groups. All subjects who completed the 11-year assessment were also pooled to evaluate long-term change from baseline. RESULTS: There were no significant differences between groups in either the five- or 11-year analyses. Across all PD patients who completed the 11-year visit, there was significant decline in Stroop Color and Color-Word and Purdue Pegboard from baseline to 11 years. CONCLUSIONS: Previous significant differences between the groups in phonemic verbal fluency and cognitive processing speed showing more decline for early DBS + ODT subjects one year after baseline diminished as PD progressed. No cognitive domains were worse for early DBS + ODT subjects compared to standard of care subjects. There were shared declines across all subjects on cognitive processing speed and motor control, likely reflecting disease progression. More study is needed to understand the long-term neuropsychological outcomes associated with early DBS in PD.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Progressão da Doença , Testes Neuropsicológicos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Doença de Parkinson/psicologia , Velocidade de Processamento , Núcleo Subtalâmico/fisiologia
14.
Ann Neurol ; 94(2): 271-284, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177857

RESUMO

OBJECTIVE: This study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation (DBS) in early stage Parkinson disease (PD) pilot clinical trial. METHODS: To determine anatomical and network correlates associated with motor outcomes for subjects randomized to early DBS (n = 14), voxelwise sweet spot mapping and structural connectivity analyses were carried out using outcomes of motor progression (Unified Parkinson Disease Rating Scale Part III [UPDRS-III] 7-day OFF scores [∆baseline➔24 months, MedOFF/StimOFF]) and symptomatic motor improvement (UPDRS-III ON scores [%∆baseline➔24 months, MedON/StimON]). RESULTS: Sweet spot mapping revealed a location associated with slower motor progression in the dorsolateral STN (anterior/posterior commissure coordinates: 11.07 ± 0.82mm lateral, 1.83 ± 0.61mm posterior, 3.53 ± 0.38mm inferior to the midcommissural point; Montreal Neurological Institute coordinates: +11.25, -13.56, -7.44mm). Modulating fiber tracts from supplementary motor area (SMA) and primary motor cortex (M1) to the STN correlated with slower motor progression across STN DBS subjects, whereas fiber tracts originating from pre-SMA and cerebellum were negatively associated with motor progression. Robustness of the fiber tract model was demonstrated in leave-one-patient-out (R = 0.56, p = 0.02), 5-fold (R = 0.50, p = 0.03), and 10-fold (R = 0.53, p = 0.03) cross-validation paradigms. The sweet spot and fiber tracts associated with motor progression revealed strong similarities to symptomatic motor improvement sweet spot and connectivity in this early stage PD cohort. INTERPRETATION: These results suggest that stimulating the dorsolateral region of the STN receiving input from M1 and SMA (but not pre-SMA) is associated with slower motor progression across subjects receiving STN DBS in early stage PD. This finding is hypothesis-generating and must be prospectively tested in a larger study. ANN NEUROL 2023;94:271-284.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Substância Branca , Humanos , Núcleo Subtalâmico/fisiologia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Resultado do Tratamento
15.
J Neurosurg ; 139(1): 275-283, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334289

RESUMO

OBJECTIVE: MRI-guided low-intensity focused ultrasound (FUS) has been shown to reversibly open the blood-brain barrier (BBB), with the potential to deliver therapeutic agents noninvasively to target brain regions in patients with Alzheimer's disease (AD) and other neurodegenerative conditions. Previously, the authors reported the short-term safety and feasibility of FUS BBB opening of the hippocampus and entorhinal cortex (EC) in patients with AD. Given the need to treat larger brain regions beyond the hippocampus and EC, brain volumes and locations treated with FUS have now expanded. To evaluate any potential adverse consequences of BBB opening on disease progression, the authors report safety, imaging, and clinical outcomes among participants with mild AD at 6-12 months after FUS treatment targeted to the hippocampus, frontal lobe, and parietal lobe. METHODS: In this open-label trial, participants with mild AD underwent MRI-guided FUS sonication to open the BBB in ß-amyloid positive regions of the hippocampus, EC, frontal lobe, and parietal lobe. Participants underwent 3 separate FUS treatment sessions performed 2 weeks apart. Outcome assessments included safety, imaging, neurological, cognitive, and florbetaben ß-amyloid PET. RESULTS: Ten participants (range 55-76 years old) completed 30 separate FUS treatments at 2 participating institutions, with 6-12 months of follow-up. All participants had immediate BBB opening after FUS and BBB closure within 24-48 hours. All FUS treatments were well tolerated, with no serious adverse events related to the procedure. All 10 participants had a minimum of 6 months of follow-up, and 7 participants had a follow-up out to 1 year. Changes in the Alzheimer's Disease Assessment Scale-cognitive and Mini-Mental State Examination scores were comparable to those in controls from the Alzheimer's Disease Neuroimaging Initiative. PET scans demonstrated an average ß-amyloid plaque of 14% in the Centiloid scale in the FUS-treated regions. CONCLUSIONS: This study is the largest cohort of participants with mild AD who received FUS treatment, and has the longest follow-up to date. Safety was demonstrated in conjunction with reversible and repeated BBB opening in multiple cortical and deep brain locations, with a concomitant reduction of ß-amyloid. There was no apparent cognitive worsening beyond expectations up to 1 year after FUS treatment, suggesting that the BBB opening treatment in multiple brain regions did not adversely influence AD progression. Further studies are needed to determine the clinical significance of these findings. FUS offers a unique opportunity to decrease amyloid plaque burden as well as the potential to deliver targeted therapeutics to multiple brain regions in patients with neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Humanos , Pessoa de Meia-Idade , Idoso , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/terapia , Placa Amiloide , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cognição
16.
Neuromodulation ; 26(2): 451-458, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36567243

RESUMO

OBJECTIVE: The deep brain stimulation (DBS) in early-stage Parkinson's disease (PD) pilot clinical trial randomized 30 patients (Hoehn & Yahr II off; medication duration 0.5-4 years; without dyskinesia/motor fluctuations) to optimal drug therapy (ODT) (early ODT) or bilateral subthalamic nucleus (STN) DBS plus ODT (early DBS+ODT). This study aims to report the 11-year outcomes of patients who completed the DBS in early-stage PD pilot clinical trial. MATERIALS AND METHODS: Attempts were made to contact all 29 subjects who completed the two-year trial to participate in an 11-year follow-up study. Mixed-effects models compared overall trend in outcomes for randomization groups (fixed-effects: assigned treatment, year, their interaction; random-effect: subject) to account for repeated measures. RESULTS: Twelve subjects participated in this 11-year follow-up study (n = 8 early ODT, n = 4 early DBS+ODT). Participating subjects were 70.0 ± 4.8 years old with a PD medication duration of 13.7 ± 1.7 years (early DBS duration 11.5 ± 1.3 years, n = 4). Three early ODT subjects received STN-DBS as standard of care (DBS duration 6.5 ± 2.0 years). Early ODT subjects had worse motor complications (Unified Parkinson's Disease Rating Scale [UPDRS]-IV) than early DBS+ODT subjects over the 11-year follow-up period (between-group difference = 3.5 points; pinteraction = 0.03). Early DBS+ODT was well-tolerated after 11 years and showed comparable outcomes to early ODT for other UPDRS domains, Parkinson Disease Questionnaire-39 (PDQ-39), and levodopa equivalent daily dose (LEDD). CONCLUSIONS: Eleven years after randomization, early DBS+ODT subjects had fewer motor complications than early ODT subjects. These results should be interpreted with caution because only 40% of pilot trial subjects participated in this 11-year follow-up study. The Food and Drug Administration has approved the conduct of a pivotal clinical trial evaluating DBS in early-stage PD (IDEG050016). CLINICAL TRIAL REGISTRATION: The Clinicaltrials.gov registration number for the study is NCT00282152.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Idoso , Doença de Parkinson/tratamento farmacológico , Seguimentos , Estimulação Encefálica Profunda/métodos , Levodopa/uso terapêutico , Núcleo Subtalâmico/fisiologia , Resultado do Tratamento
17.
Front Neurol ; 14: 1331241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38362012

RESUMO

Drug-induced tremor is a common side effect of lithium with an occurrence of approximately 25% of patients. Cessation of the offending drug can be difficult, and many medical treatments for drug-induced tremor are ineffective. Deep brain stimulation (DBS) has been shown in a limited number of case reports to effectively reduce drug-induced tremor, however, which remains an invasive therapeutic option. MR-guided focused ultrasound (MRgFUS) thalamotomy is an FDA-approved non-invasive treatment for essential tremor (ET). To the best of our knowledge, MRgFUS thalamotomy has never been reported to treat drug-induced tremor. Here, we present a case of a left-handed 55-year-old man with a progressive, medically refractory lithium-induced tremor of the bilateral upper extremities. The patient underwent MRgFUS thalamotomy targeting the right ventral intermediate nucleus (VIM) of the thalamus to treat the left hand. There was almost complete resolution of his left-hand tremor immediately following MRgFUS. There were no side effects. The patient continues to show excellent tremor control at 90-day follow-up and remains free from side effects. This case demonstrates MRgFUS thalamotomy as a possible novel treatment option to treat drug-induced tremor.

18.
J Clin Neurosci ; 105: 122-128, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36182812

RESUMO

OBJECTIVE: Vagus Nerve Stimulation (VNS) paired with rehabilitation delivered by the Vivistim® Paired VNS™ System was approved by the FDA in 2021 to improve motor deficits in chronic ischemic stroke survivors with moderate to severe arm and hand impairment. Vagus nerve stimulators have previously been implanted in over 125,000 patients for treatment-resistant epilepsy and the surgical procedure is generally well-tolerated and safe. In this report, we describe the Vivistim implantation procedure, perioperative management, and complications for chronic stroke survivors enrolled in the pivotal trial. METHODS: The pivotal, multisite, randomized, triple-blind, sham-controlled trial (VNS-REHAB) enrolled 108 participants. All participants were implanted with the VNS device in an outpatient procedure. Thrombolytic agents were temporarily discontinued during the perioperative period. Participants were discharged within 48 hrs and started rehabilitation therapy approximately 10 days after the Procedure. RESULTS: The rate of surgery-related adverse events was lower than previously reported for VNS implantation for epilepsy and depression. One participant had vocal cord paresis that eventually resolved. There were no serious adverse events related to device stimulation. Over 90% of participants were taking antiplatelet drugs (APD) or anticoagulants and no adverse events or serious adverse events were reported as a result of withholding these medications during the perioperative period. CONCLUSIONS: This study is the largest, randomized, controlled trial in which a VNS device was implanted in chronic stroke survivors. Results support the use of the Vivistim System in chronic stroke survivors, with a safety profile similar to VNS implantations for epilepsy and depression.


Assuntos
Epilepsia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação do Nervo Vago , Anticoagulantes , Epilepsia/etiologia , Epilepsia/cirurgia , Fibrinolíticos , Humanos , Inibidores da Agregação Plaquetária , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/terapia , Reabilitação do Acidente Vascular Cerebral/métodos , Resultado do Tratamento , Nervo Vago , Estimulação do Nervo Vago/métodos
19.
J Neural Eng ; 19(2)2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35172283

RESUMO

Objective.The objectives of this study were to assess gait biomechanics and the effect of overground walking speed on gait parameters, kinematics, and electromyographic (EMG) activity in the hindlimb muscles of Yucatan minipigs (YMPs).Approach.Nine neurologically-intact, adult YMPs were trained to walk overground in a straight line. Whole-body kinematics and EMG activity of hindlimb muscles were recorded and analyzed at six different speed ranges (0.4-0.59, 0.6-0.79, 0.8-0.99, 1.0-1.19, 1.2-1.39, and 1.4-1.6 m s-1). A MATLAB program was developed to detect strides and gait events automatically from motion-captured data. The kinematics and EMG activity were analyzed for each stride based on the detected events.Main results.Significant decreases in stride duration, stance and swing times and an increase in stride length were observed with increasing speed. A transition in gait pattern occurred at the 1.0 m s-1walking speed. Significant increases in the range of motion of the knee and ankle joints were observed at higher speeds. Also, the points of minimum and maximum joint angles occurred earlier in the gait cycle as the walking speed increased. The onset of EMG activity in the biceps femoris muscle occurred significantly earlier in the gait cycle with increasing speed.Significance.YMPs are becoming frequently used as large animal models for preclinical testing and translation of novel interventions to humans. A comprehensive characterization of overground walking in neurologically-intact YMPs is provided in this study. These normative measures set the basis against which the effects of future interventions on locomotor capacity in YMPs can be compared.


Assuntos
Marcha , Caminhada , Animais , Fenômenos Biomecânicos , Eletromiografia , Marcha/fisiologia , Músculos , Suínos , Porco Miniatura , Caminhada/fisiologia
20.
J Sci Med Sport ; 25(1): 81-88, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34509343

RESUMO

OBJECTIVES: Quantitative vestibular testing in athletes after sports-related concussion (SRC) has become more popular due to accompanying injuries of the peripheral-vestibular organs that require targeted treatment. Sports-specific normative values are currently not available. Taking into account potential adaptational mechanisms, we obtained sports-specific, age- and peak-head-velocity-corrected normative values of peripheral-vestibular function and postural-stability in football (soccer, FB) and ice-hockey (IH) players. DESIGN: Retrospective single-center case-control study. METHOD: Pre-seasonal angular vestibulo-ocular reflex (aVOR) gains and cumulative-saccadic-amplitudes were obtained using the video-head-impulse test and performance in the balance-error-scoring-system (BESS) was recorded and compared in high-level FB-players (n = 510, 197 females) and IH-players (n = 210, males only) (age-range = 13-39y) and in healthy normals (n = 49, 22 females). Statistical analysis was performed using a generalized linear model. RESULTS: aVOR-gain values were significantly higher for FB-players than for IH-players (1.07 ±â€¯0.21 vs. 0.98 ±â€¯0.13, p < 0.001) and controls (1.07 ±â€¯0.21 vs. 0.97 ±â€¯0.17, p < 0.001). Significant age-related changes in aVOR-gains were only observed for the anterior and posterior canals in the IH-players. Cumulative-saccadic-amplitudes were clearly below established cut-off values (0.73°/trial). BESS scores were significantly higher in IH-players than in FB-players (15.4 ±â€¯5.1 vs. 11.2 ±â€¯4.9, p < 0.001). CONCLUSIONS: The significantly better performance of the FB players in the vertical aVOR-gains and the BESS compared to the IH-players could be related to sports-specific differences influencing visuo-vestibular and balance performance. Therefore, we recommend using the established normative aVOR-gain values for high-level FB-players, whereas in IH obtaining individual pre-seasonal (baseline) aVOR-gain values is proposed. Further studies should add sports-specific normative aVOR-gain values for IH and other sports.


Assuntos
Hóquei , Futebol , Estudos de Casos e Controles , Feminino , Teste do Impulso da Cabeça , Humanos , Masculino , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA