Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 30(13): e1706230, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29388262

RESUMO

Thermoelectric devices convert heat flow to charge flow, providing electricity. Materials for highly efficient devices must satisfy conflicting requirements of high electrical conductivity and low thermal conductivity. Thermal conductivity in caged compounds is known to be suppressed by a large vibration of guest atoms, so-called rattling, which effectively scatters phonons. Here, the crystal structure and phonon dynamics of tetrahedrites (Cu,Zn)12 (Sb,As)4 S13 are studied. The results reveal that the Cu atoms in a planar coordination are rattling. In contrast to caged compounds, chemical pressure enlarges the amplitude of the rattling vibration in the tetrahedrites so that the rattling atom is squeezed out of the planar coordination. Furthermore, the rattling vibration shakes neighbors through lone pairs of the metalloids, Sb and As, which is responsible for the low thermal conductivity of tetrahedrites. These findings provide a new strategy for the development of highly efficient thermoelectric materials with planar coordination.

2.
Phys Chem Chem Phys ; 19(13): 8874-8879, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28294254

RESUMO

The synthetic tetrahedrites Cu12-yTrySb4S13 (Tr: Mn, Fe, Co, Ni, Zn) have been extensively studied due to interest in metal-semiconductor transition as well as in superior thermoelectric performance. We have prepared Ge- and Sn-bearing tetrahedrites, Cu12-xMxSb4S13 (M = Ge, Sn; x ≤ 0.6), and investigated the effects of the substitutions on the phase transition and the thermoelectric properties. The substitutions of Ge and Sn for Cu suppress the metal-semiconductor transition and increase the electrical resistivity ρ and the positive thermopower S. This finding suggests that the phase transition is prevented by electron doping into the unoccupied states of the valence band. The variations of ρ, S, and magnetic susceptibility for the present systems correspond well with those for the system with Tr = Zn2+, confirming the tetravalent states for Ge and Sn. The substitution of M4+ for Cu1+ decreases the power factor S2/ρ but enhances the dimensionless thermoelectric figure of merit ZT, due to reductions in both the charge carrier contribution and lattice contribution to the thermal conductivity. As a result, ZT has a maximum value of ∼0.65 at 665 K for x = 0.3-0.5 in Cu12-xMxSb4S13 with M = Ge and Sn.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA