Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(15): 10567-10582, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36988096

RESUMO

The present work reports enhanced photocatalytic performance of highly crystalline, monodisperse ZnSe microspheres, synthesized by the size-selective, ETDA-assisted hydrothermal method. Systematic studies on time-dependent reaction kinetics and growth parameters indicate dependency of morphology and crystal structure on the volume % of EDTA and dependency of size on the volume % of hydrazine hydrate for ZnSe microspheres. X-ray diffraction studies confirm highly crystalline cubic zinc blende crystal structure with crystallite size in the range of 10-15 nm. Diffuse reflectance spectra show blue shift having a broad absorption peak between 415 and 425 nm, with a band gap of ∼2.6 eV from the K-M plot. Photoluminescence spectra show higher ratio of near band edge emission to deep level emission, confirming the decrease in defect related emission and depicting the higher crystallinity of ZnSe. Raman spectroscopy also confirms the crystalline and pure nature of ZnSe microspheres, from the observation of a high intensity dominant peak at 248 cm-1, attributed to longitudinal optical phonon scattering. Morphological analysis using FE-SEM and HRTEM shows monodispersed microspheres having size ∼2.5 µm, made up of small ZnSe nanocrystals with ∼10 nm size and with an interplanar spacing of ∼0.32 nm, corresponding to zinc blende ZnSe(111) planes. Brunauer-Emmett-Teller analysis indicates type-IV adsorption-isotherms and hysteresis loops, confirming the presence of mesopores on the surface of ZnSe microspheres controlling the diffusion rate of the catalyst. The degradation rate constant for methylene-blue using first-order reaction kinetics confirms improvement in photocatalytic activity by a factor of 7 to 13 times higher than that of bulk ZnSe, which is attributed to the controlled, well-defined morphology of spherical microstructures made up of small-sized ZnSe nanocrystals. Density functional theory based calculations support the preferential adsorption of EDTA at the Se site of the ZnSe(111) surface with an energy of -1.90 eV. The electronic-structure plot demonstrates semiconducting behaviour with a direct band gap of ∼1.51 eV. First-principles calculations confirm enhancement in the photocatalytic water splitting activity of the ZnSe(111) surface via adsorption of intermediates. The improvement in dye degradation can be attributed to the enhanced oxidation process through the formation of intermediates such as O* (-3.13 eV) and HO* (-2.57 eV) at the Se site of the ZnSe surface.

2.
Nanoscale ; 15(3): 1327-1337, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36546484

RESUMO

First-principles theory-based comparative electronic-transport studies were performed for an atomic chain of Au, a bare Cd9Te9 cage-like cluster, and a single transition metal (TM) (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd) atom encapsulated within the Cd9Te9 using Au(111) as the electrodes. The bare cluster was semiconducting and acted as a tunnel barrier up to a particular applied bias and then beyond that the device displayed a linear current-voltage relationship. Several TMs (Ti, V, Cr, Mn, Fe) encapsulated in the cage showed a half-metallic behavior and spin-filtering effect in the I-V characteristics of the device. Detailed qualitative and quantitative analyses of the I-V characteristics for metallic, semiconducting, and half-metallic nanostructures were carried out for quantifying the use of these TMs in spintronic device applications.

3.
J Phys Condens Matter ; 32(1): 015501, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505482

RESUMO

In this article, we present our results on bilayers assembled upon strategic placement of Cd6Se6 clusters. These bilayers are studied for their stability and electronic structure with the help of density functional theory and are further analyzed using Bardeen, Tersoff and Hamann formalism for their tunneling properties. Our calculations show that the hexagonal arrangement of these clusters prevails as the most stable geometry showing all real phonon modes. First-principles molecular dynamics studies on this 2D structure show that it remains intact even at room temperature. This bilayer shows an indirect semiconducting band gap of 1.28 eV with the current-voltage (I-V) characteristics similar to a tunnel diode. Furthermore, we functionalized this bilayer using transition metal atoms, Co and Cr. The aim was to see whether the bilayer sustains magnetism and how the concentration affects its electronic and magnetic properties. Co functionalization brings ferromagnetic ordering in the bilayer which turns near half-metallic upon increasing the concentration. On the other hand, Cr functionalization shows a transition from antiferro- to ferromagnetic ordering upon increasing the concentration. The I-V characteristics of all these functionalized bilayers show negative differential conductance similar to a tunnel diode.

4.
ACS Omega ; 3(5): 5853-5864, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458783

RESUMO

Size confinement for tailoring of electronic structures can in principle be explored for enhancement of photocatalytic properties. In the present work, vanadium-doped bismuth oxide nanoparticles, with an average particle size of 36 nm, are synthesized for the first time, using the thermal plasma method, in large scale with high yield to explore for photocatalytic applications. The electronic and crystallographic structures of the sample are studied experimentally and theoretically. Systematic investigations of the electronic structure of the fluorite type cubic phase of Bi11VO19 nanoparticles are reported for the first time. Enhancement is observed in the photocatalytic activity as compared to other delta phases of bismuth vanadate. The valence band is found to comprise mainly of O 2p states, whereas the conduction band arises from V 3d states giving rise to a band gap value of 2.26 eV. Absence of excess O in δ-Bi2O3 results in shrinking of the band gap because of O 2p, Bi 6s and 6p states from the surrounding atoms at doping sites. Bi11VO19 nanoparticles show an efficient visible light absorption and exhibit excellent photodegradation properties of methylene blue solution under visible light irradiation.

5.
ACS Omega ; 3(7): 7692-7702, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458919

RESUMO

Electronic structure of nearly stoichiometric and nonstoichiometric clusters of ZnO having bulk-like wurtzite geometry passivated with fictitious hydrogen atoms are comparatively analyzed for structural evolution using density functional theory-based electronic structure calculations. A parameter, average binding energy per atomic number (ABE-number), is introduced for better insight of structural evolution. The stability of a cluster is determined by binding energy per atom and ABE-number, whereas structural evolution on the basis of spin-polarized energy spectrum is studied via site projected partial density of states (l-DOS). The overall structural evolution is mapped for bare and passivated ZnO clusters to l-DOS. The study has established a correlation between the stability of clusters and their l-DOS. O-excess and O-surfaced clusters are found to be more stable. The HOMO-LUMO gap varies from 0 to 6.3 eV by tuning the size, composition, and surface termination of the clusters. Present results reported for clusters of sizes up to ∼1 nm can pave a path for formulating strategies for experimental synthesis of ZnO nanoparticles for tuning the HOMO-LUMO gap.

6.
J Phys Condens Matter ; 29(33): 335501, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28738023

RESUMO

To explore the possibility of cluster assembly resulting in a two-dimensional (2D) stable monolayer of ZnO, a systematic study is performed on the structural evolution of bare and passivated stoichiometric clusters of [Formula: see text] [Formula: see text], [Formula: see text], using density-functional-theory-based first principles electronic structure calculations. The changes in hybridization are investigated with the aid of the site-projected partial density of states and partial charge density, while the effect of passivation and size on the ionicity of the cluster is studied using Bader charge analysis. The structural and chemical properties are found to be influenced by the coordination number of atoms in the clusters irrespective of the coordinating species. The physical parameters and hybridization of the states for the clusters on passivation resemble those of the bulk. Passivation thus provides an environment that leads to the stability of the clusters. Cluster assembly using the stable cluster geometries of passivated clusters (without the passivating atoms) has been shown to lead to stable 2D structures. This stability has been studied on the basis of binding energy, vibrational frequency, phonon dispersion and thermal properties. A new octagonal 2D monolayer planar geometry of ZnO is predicted.

7.
Phys Chem Chem Phys ; 19(22): 14495-14502, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28534913

RESUMO

To investigate energy gap bowing in homogeneously alloyed CdSxSe1-x quantum dots (QDs) and to understand whether it is different from bulk, we perform density functional theory based electronic structure calculations for spherical QDs of different compositions x (0 ≤ x ≤ 1) and of varying sizes (2.2 to 4.6 nm). We find the bowing constant to be slightly higher than in bulk for different sizes of quantum dots. The change in the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap of QDs mainly arises due to the change in the LUMO energies. Upon comparison, the highest occupied molecular orbital (HOMO) energies remain almost the same. This observation is in contrast to the results for bulk CdSxSe1-x (J. Appl. Phys., 2000, 87, 1304). We identify the change in the lattice constant on alloying as the main factor affecting the hybridization of the anion-cation state, which in turn results in bowing of the HOMO-LUMO gap. To understand the shape dependence of the band gap, we perform electronic structure calculations for pyramid-shaped and cubic QDs of different compositions and of two different sizes. The study of l-decomposed partial charge density and Bader charge analysis is useful to understand the difference in the nature of bonding with changing size and composition. The results presented will assist in experiments and hence can lead to the possible applications of CdSxSe1-x QDs.

8.
J Chem Phys ; 146(5): 054703, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178792

RESUMO

We report simulation results for scanning tunneling spectroscopy of gold-tipped CdSe nanodumbbells of lengths ∼27 Å and ∼78 Å. Present results are based on Bardeen, Tersoff, and Hamann formalism that takes inputs from ab initio calculations. For the shorter nanodumbbell, the current-voltage curves reveal negative differential conductance, the characteristic of a tunnel diode. This behaviour is attributed to highly localized metal induced gap states that rapidly decay towards the center of the nanodumbbell leading to suppression in tunneling. In the longer nanodumbbell, these gap states are absent in the central region, as a consequence of which zero tunneling current is observed in that region. The overall current-voltage characteristics for this nanodumbbell are observed to be largely linear near the metal-semiconductor interface and become rectifying at the central region, the nature being similar to its parent nanorod. The cross-sectional heights of these nanodumbbells also show bias-dependence where we begin to observe giant Stark effect features in the semiconducting central region of the longer nanodumbbell.

9.
Chemphyschem ; 17(2): 244-52, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26799525

RESUMO

The absolute electronic energy levels in Hg-doped CdTe semiconductor nanocrystals (CdHgTe NCs) with varying sizes/volumes and Hg contents are determined by using cyclic voltammetry (CV) measurements and density functional theory (DFT) -based calculations. The electrochemical measurements demonstrate several distinct characteristic features in the form of oxidation and reduction peaks in the voltammograms, where the peak positions are dependent on the volume of CdHgTe NCs as well as on their composition. The estimated absolute electronic energy levels for three different volumes, namely 22, 119 and 187 nm(3) with 2.7±0.3 % of Hg content, show strong volume dependence. The volume-dependent shift in the characteristic reduction and oxidation peak potential scan can be attributed to the alteration in the energetic band positions owing to the quantum confinement effect. Moreover, the composition (Cd/Hg=98.3/1.7 and 97.0/3.0) -dependent alteration in the electronic energy levels of CdHgTe NCs for two different samples with similar volumes (ca. 124±5 nm(3) ) are shown. Thus obtained electronic energy level values of CdHgTe NCs as a function of volume and composition demonstrate good congruence with the corresponding absorption and emission spectral data, as well as with DFT-based calculations. DFT calculations reveal that incorporation of Hg into CdTe NCs mostly affects the energy levels of conduction band edge, whereas the valence band edge remains almost unaltered.

10.
Phys Chem Chem Phys ; 16(22): 10823-9, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24759897

RESUMO

We report the electronic structure of free standing and gold attached passivated CdSe nanorods. The goal is to assess the changes at the nanolevel after formation of contacts with gold clusters serving as electrodes and compare the results with experimental observations [Steiner et al., Phys. Rev. Lett., 2005, 95, 056805]. It is interesting to note that upon attaching gold clusters, the nanorods shorter than 27 Å develop metallicity by means of metal induced gap states (MIGS). Longer nanorods exhibit a nanoscale Schottky barrier emerging at the center. For these nanorods, the interfacial region closest to the gold electrodes shows a finite density of states in the gap due to MIGS, which gradually decreases towards the center of the nanorod opening up a finite gap. Our theoretical results agree qualitatively with the experimental results of Steiner et al. This study attempts to identify the minimum length of a one-dimensional nanostructure to be used in an electronic device. An analysis of density of states and charge density brings out the role of hybridization of semiconductor states with metal states. Bader charge analysis indicates localized charge transfer from metal to semiconductor.

11.
J Phys Condens Matter ; 22(29): 295304, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21399300

RESUMO

Calculations of Slater-Koster (SK) parameters appearing in the tight-binding method using sp(3)d(5) basis sets for both the cationic and anionic species are presented for ZnS and CdS. We have adjusted these parameters to match the band structures obtained from the full potential linear augmented plane wave method. This operation has been carried out for a variety of structures namely zinc blende, wurtzite, rocksalt, CsCl and for a wide range of near-neighbor distances. The SK parameters have slightly different values for the same near-neighbor distance in different structures. Therefore, a least-squares fitting has been performed separately for each parameter as a function of only the near-neighbor distance to guarantee the transferability of these parameters to different structural environments. The fitted parameters are then used to calculate the electronic structure of small-sized clusters of ZnS and CdS in given geometries and the results are compared with ab initio results. A fairly good agreement found in the one-electron energy spectrum and total energy confirms transferability of the parameters to different length scales. A detailed account of the calculation procedure and calibration results is given in the present paper. These parameters can be used to study the electronic structure of large-sized clusters where first-principles methods are computationally demanding. It may be mentioned that the SK parameters do not satisfy the R(-(l + l' + 1)) Harrison scaling law for larger values of the near-neighbor distance R.

12.
J Chem Phys ; 127(22): 224708, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-18081415

RESUMO

Results describing the interaction of a single sulfur atom with cationic gold clusters (Au(n) (+), n=1-8) using density functional theory are described. Stability of these clusters is studied through their binding energies, second order differences in the total energies, fragmentation behavior, and atom attachment energies. The lowest energy structures for these clusters appear to be three dimensional right from n=3. In most cases the sulfur atom in the structure of Au(n)S(+) is observed to displace the gold atom siting at the peripheral site of the Au(n) (+) cluster. The dissociation channels of Au(n)S(+) clusters follow the same trend as Au(n) (+) cluster, based on the even/odd number of gold atoms in the cluster, with the exception of Au(3)S(+). This cluster dissociates into Au and Au(2)S(+), signifying the relative stability of Au(2)S(+) cluster regardless of having an odd number of valence electrons. Clusters with an even number of gold atoms dissociate into Au and Au(n-1)(S)(+) and clusters with an odd number of gold atoms dissociate into Au(2) and Au(n-2)(S)(+) clusters. An empirical relation is found between the conduction molecular orbital and the number of atoms in the Au(n)S(+) cluster.

13.
J Chem Phys ; 126(24): 244705, 2007 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-17614575

RESUMO

The authors present theoretical results describing the adsorption of H2 and H2S molecules on small neutral and cationic gold clusters (Au(n)((0/+1)), n=1-8) using density functional theory with the generalized gradient approximation. Lowest energy structures of the gold clusters along with their isomers are considered in the optimization process for molecular adsorption. The adsorption energies of H2S molecule on the cationic clusters are generally greater than those on the corresponding neutral clusters. These are also greater than the H2 adsorption energies on the corresponding cationic and neutral clusters. The adsorption energies for cationic clusters decrease with increasing cluster size. This fact is reflected in the elongations of the Au-S and Au-H bonds indicating weak adsorption as the cluster grows. In most cases, the geometry of the lowest energy gold cluster remains planar even after the adsorption. In addition, the adsorbed molecule gets adjusted such that its center of mass lies on the plane of the gold cluster. Study of the orbital charge density of the gold adsorbed H2S molecule reveals that conduction is possible through molecular orbitals other than the lowest unoccupied molecular orbital level. The dissociation of the cationic Au(n)SH2+ cluster into Au(n)S+ and H2 is preferred over the dissociation into Au(m)SH2+ and Au(n-m), where n=2-8 and m=1-(n-1). H2S adsorbed clusters with odd number of gold atoms are more stable than neighboring even n clusters.


Assuntos
Físico-Química/métodos , Ouro/química , Sulfeto de Hidrogênio/química , Hidrogênio/química , Adsorção , Sítios de Ligação , Cátions , Análise por Conglomerados , Modelos Químicos , Modelos Moleculares , Modelos Teóricos , Conformação Molecular , Peso Molecular , Prótons
14.
J Chem Phys ; 122(20): 204110, 2005 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-15945716

RESUMO

Electron density and electron momentum density, while independently tractable experimentally, bear no direct connection without going through the many-electron wave function. However, invoking a variant of the constrained-search formulation of density-functional theory, we develop a general scheme (valid for arbitrary external potentials) yielding decent momentum-space properties, starting exclusively from the coordinate-space electron density. A numerical illustration of the scheme is provided for the closed-shell atomic systems He, Be, and Ne in their ground state and for 1s(1) 2s(1) singlet electronic excited state for helium by calculating the Compton profiles and the expectation values derived from given coordinate-space electron densities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA