Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1369849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779681

RESUMO

Background: Stomolophus meleagris envenomation causes severe cutaneous symptoms known as jellyfish dermatitis. The potential molecule mechanisms and treatment efficiency of dermatitis remain elusive because of the complicated venom components. The biological activity and molecular regulation mechanism of Troxerutin (TRX) was firstly examined as a potential treatment for jellyfish dermatitis. Methods: We examined the inhibit effects of the TRX on tentacle extract (TE) obtained from S. meleagris in vivo and in vitro using the mice paw swelling models and corresponding assays for Enzyme-Linked Immunosorbent Assay (ELISA) Analysis, cell counting kit-8 assay, flow cytometry, respectively. The mechanism of TRX on HaCaT cells probed the altered activity of relevant signaling pathways by RNA sequencing and verified by RT-qPCR, Western blot to further confirm protective effects of TRX against the inflammation and oxidative damage caused by TE. Results: TE significantly induced the mice paw skin toxicity and accumulation of inflammatory cytokines and reactive oxygen species in vivo and vitro. Moreover, a robust increase in the phosphorylation of mitogen-activated protein kinase (MAPKs) and nuclear factor-kappa B (NF-κB) signaling pathways was observed. While, the acute cutaneous inflammation and oxidative stress induced by TE were significantly ameliorated by TRX treatment. Notablly, TRX suppressed the phosphorylation of MAPK and NF-κB by initiating the nuclear factor erythroid 2-related factor 2 signaling pathway, which result in decreasing inflammatory cytokine release. Conclusion: TRX inhibits the major signaling pathway responsible for inducing inflammatory and oxidative damage of jellyfish dermatitis, offering a novel therapy in clinical applications.


Assuntos
Venenos de Cnidários , Dermatite , Hidroxietilrutosídeo , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Venenos de Cnidários/farmacologia , Citocinas/metabolismo , Dermatite/tratamento farmacológico , Dermatite/etiologia , Modelos Animais de Doenças , Células HaCaT , Heme Oxigenase-1/metabolismo , Hidroxietilrutosídeo/análogos & derivados , Hidroxietilrutosídeo/farmacologia , Hidroxietilrutosídeo/uso terapêutico , Inflamação/tratamento farmacológico , Proteínas de Membrana , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Cifozoários , Transdução de Sinais/efeitos dos fármacos
2.
Front Cell Dev Biol ; 11: 1209243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305681

RESUMO

Background: The US Food and Drug Administration (FDA)'s tumor-agnostic approval of pembrolizumab in high tumor mutational burden (TMB-high, i.e., TMB≥10 mut/Mb) cases, based on the data from KEYNOTE-158, has raised considerable concerns among the immuno-oncology community. This study aims to statistically infer the optimal universal cutoff in defining TMB-high that is predictive of the efficacy of anti-PD-(L) 1 therapy in advanced solid tumors. Methods: We integrated MSK-IMPACT TMB data from a public cohort and the objective response rate (ORR) for anti-PD-(L) 1 monotherapy across diverse cancer types in published trials. The optimal TMB cutoff was determined by varying the universal cutoff to define TMB-high across cancer types and examining the cancer-level correlation between objective response rate and the proportion of TMB-high cases. The utility of this cutoff in predicting overall survival (OS) benefits from anti-PD-(L) 1 therapy was then evaluated in a validation cohort of advanced cancers with coupled MSK-IMPACT TMB and OS data. In silico analysis of whole-exome sequencing data from The Cancer Genome Atlas was further employed to assess the generalizability of the identified cutoff among panels comprising several hundred genes. Results: The cancer type-level analysis identified 10 mut/Mb as the optimal cutoff for MSK-IMPACT in defining TMB-high, with the corresponding TMB-high (TMB≥10 mut/Mb) percentage strongly correlated with ORR for PD-(L) 1 blockade across cancer types [correlation coefficient, 0.72 (95% CI, 0.45-0.88)]. This cutoff was also the optimum in defining TMB-high (via MSK-IMPACT) when predicting OS benefits from anti-PD-(L) 1 therapy in the validation cohort. In this cohort, TMB≥10 mut/Mb was associated with significantly improved OS (hazard ratio, 0.58 [95% CI, 0.48-0.71]; p < 0.001). Moreover, in silico analyses revealed excellent agreement of TMB≥10 mut/Mb cases between MSK-IMPACT and the FDA-approved panels and between MSK-IMPACT and various randomly sampled panels. Conclusion: Our study demonstrates that 10 mut/Mb is the optimal, universal cutoff for TMB-high that guides the clinical application of anti-PD-(L) 1 therapy for advanced solid tumors. It also provides rigorous evidence beyond KEYNOTE-158 for the utility of TMB≥10 mut/Mb in predicting the efficacy of PD-(L) 1 blockade in broader settings, which could help to mitigate the challenges in embracing the tumor-agnostic approval of pembrolizumab in TMB-high cases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA