Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 130(14): 144703, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19368461

RESUMO

The adsorption of CO on the rutile TiO(2)(110) surface was investigated using He atom scattering (HAS), high resolution electron energy loss spectroscopy (HREELS), thermal desorption spectroscopy (TDS), and different types of ab initio electronic structure calculations. The experimental and theoretical results allow to put forward a consistent picture for this rather complicated adsorbate system. At 70 K a (2x1) adlayer with a glide symmetry plane is formed, containing two molecules per unit cell which are tilted in alternate directions by about 20 degrees relative to the surface normal. For this high density phase, the theoretical calculations reveal a substantial repulsion between CO molecules on neighboring lattice sites, in accord with the results of a detailed analysis of the experimental TDS data. The CO binding energy depends strongly on coverage and varies between 0.20 eV for the saturated monolayer and 0.36 eV for isolated molecules. The CO-CO repulsion leads to the desorption of about half of the CO molecules above 70 K and the formation of low density phases. HAS gave no indication of ordered adlayers at these lower coverages. For the internal stretching vibration of the CO molecules a value of 273 meV was determined by HREELS, in very good agreement with the theoretical calculations.

2.
Phys Chem Chem Phys ; 8(13): 1499-504, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16633633

RESUMO

The adsorption and desorption of CO on the hydroxylated, O-terminated polar ZnO(0001) surface has been studied using He-atom scattering. The experimental results reveal the formation of a physisorbed ordered CO overlayer. In addition to recording angular distributions of elastically scattered He atoms, also the dynamical properties of the CO overlayer have been investigated using inelastic He-atom scattering. With the aid of electronic structure calculations a loss peak with an energy transfer of 7.2 meV is assigned to the frustrated translation of the CO molecule normal to the surface.

3.
Phys Chem Chem Phys ; 8(13): 1505-12, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16633634

RESUMO

The adsorption of water multilayers on a well defined single crystal, hydroxyl-terminated ZnO-surface, H(1x1)-O-ZnO(0001) surface has been investigated using infrared (IR) spectroscopy, helium atom scattering (HAS) and X-ray photoelectron spectroscopy (XPS). The results reveal the formation of well ordered mono-, bi- and multilayers of D2O and H2O on this substrate. On the bare hydroxyl-covered H(1x1) surface the OH-stretch vibration could be clearly identified in the IR-spectra. The water adsorption and desorption kinetics on this hydroxylated surface were studied by monitoring the reflectivity of the surface for helium atoms. The analysis of the data yielded activation energies for desorption of H2O from the H(1x1) O-ZnO surface of 55.2 kJ mol-1. The results reveal the formation of ordered mono- and bilayers. Further exposure to water at 113 K results in the formation of amorphous 3-D islands.

4.
Phys Rev Lett ; 95(26): 266104, 2005 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-16486375

RESUMO

Exposure of the mixed-terminated surface to atomic hydrogen at room temperature is found to lead to drastic changes of the electrical properties. The insulator surface is found to become metallic. By employing several experimental techniques (electron energy loss spectroscopy, He-atom scattering, and scanning tunneling microscopy) together with ab initio electronic structure calculations we demonstrate that a low-temperature (1 x 1) phase with two H atoms in the unit cell transforms upon heating to another (1 x 1) phase with only one H atom per unit cell. The odd number of electrons added to the surface per unit cell gives rise to partially filled surface states and thus a metallization of the surface.

5.
Phys Rev Lett ; 90(10): 106102, 2003 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-12689012

RESUMO

The determination of the structure of inhomogeneous metal-oxide surfaces represents a formidable task. With the present study, we demonstrate that using the binding energy of a probe molecule, CO, is a reliable tool to validate structural models for such complex surfaces. Combining several types of first-principles calculations with advanced molecular beam methods, we are able to provide conclusive evidence that the polar O-terminated surface of ZnO is either reconstructed or hydrogen covered. This finding has important consequences for the ongoing discussion regarding the stabilization mechanism of the electrostatically unstable ("Tasker type 3") polar ZnO surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA