Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurooncol Adv ; 2(1): vdaa058, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32642710

RESUMO

BACKGROUND: Radiation therapy for brain tumors commonly induces cognitive dysfunction. The prefrontal cortex (PFC) is crucial for a diverse array of cognitive processes, however, its role in radiation-induced cognitive dysfunction is unknown. We previously found that cranial irradiation impairs neuroplasticity along the hippocampal-PFC pathway. Herein, we hypothesized that brain irradiation directly affects the firing properties of PFC neurons, contributing to deficits in neuronal functions. METHODS: In vivo recordings were used to monitor the firing activities of PFC neurons and local field potentials in both PFC and hippocampal CA1/subicular regions after cranial irradiation of Sprague Dawley rats. We further assessed the impacts of irradiation on axon initial segments (AISs) with immunofluorescence assays of PFC slices. RESULTS: We found that PFC neurons exhibited increased excitation 3 days after radiation and the timing of increased excitation coincided with elongation of the AIS. At 2 weeks, excitation levels returned to nearly normal levels however the population of spontaneously firing neurons decreased. While the number of NeuN-positive neurons in the PFC was not different, persistent neuronal injury, manifested as ATF-3 staining, was present at 2 weeks. Radiation also disrupted communication along the hippocampal-PFC pathway, with elongation of the phase lag between regions. Analysis of paired-pulse ratios suggested that this was secondary to presynaptic dysfunction. CONCLUSIONS: Cranial irradiation excited and injured surviving PFC neurons and was associated with a partial block of PFC's functional coupling to the hippocampus. These deficits in the PFC may contribute to radiation-induced cognitive dysfunction.

2.
Neuro Oncol ; 20(9): 1207-1214, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-29660023

RESUMO

Background: Radiation-induced cognitive dysfunction is a significant side effect of cranial irradiation for brain tumors. Clinically, pediatric patients are more vulnerable than adults. However, the underlying mechanisms of dysfunction, including reasons for age dependence, are still largely unknown. Previous studies have focused on the loss of hippocampal neuronal precursor cells and deficits in memory. However, survivors may also experience deficits in attention, executive function, or other non-hippocampal-dependent cognitive domains. We hypothesized that brain irradiation induces age-dependent deficits in cortical synaptic plasticity. Methods: In vivo recordings were used to test neuronal plasticity along the direct pathway from the cornu ammonis 1 (CA1)/subicular region to the prefrontal cortex (PFC). Specifically, long-term potentiation (LTP) in the CA1/subicular-PFC pathway was assessed after cranial irradiation of juvenile and adult Sprague Dawley rats. We further assessed a potential role for glutamate toxicity by evaluating the potential neuroprotective effects of memantine. Results: LTP was greatly inhibited in both adult and juvenile animals at 3 days after radiation but returned to near-normal levels by 8 weeks-only in adult rats. Memantine given before, but not after, irradiation partially prevented LTP inhibition in juvenile and adult rats. Conclusion: Cranial radiation impairs neuroplasticity along the hippocampal-PFC pathway; however, its effects vary by age. Pretreatment with memantine offered protection to both juvenile and adult animals. Deficits in cortical plasticity may contribute to radiation-induced cognitive dysfunction, including deficits in attention and age-dependent sensitivity of such pathways, which may underlie differences in clinical outcomes between juveniles and adults after cranial irradiation.


Assuntos
Irradiação Craniana/efeitos adversos , Hipocampo/patologia , Memantina/farmacologia , Transtornos da Memória/patologia , Plasticidade Neuronal/efeitos da radiação , Neurônios/patologia , Córtex Pré-Frontal/patologia , Fatores Etários , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/efeitos da radiação , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/efeitos da radiação , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/efeitos da radiação , Lesões por Radiação/prevenção & controle , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA