Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 46(21): 5429-5432, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724493

RESUMO

We report a 1.5-GHz Kerr-lens mode-locked (KLM) Yb:Y2O3 ring laser constructed by directly bonding the cavity components onto an aluminum baseplate. Stable unidirectional operation with an output power ≥10mW was obtained for pump-diode currents of 300-500 mA, corresponding to a total electrical power consumption of 1.5 W. After repetition rate stabilization, a comparison with a conventionally constructed identical laser showed a 50% reduction in phase noise. In free-running operation the bonded laser showed superior passive repetition rate stability. The bonding process follows an already proven integration approach in space-borne instrumentation, mapping a development pathway for KLM lasers in aerospace applications.

2.
Opt Express ; 22(9): 10494-9, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24921751

RESUMO

We report a fully stabilized 1030-nm Yb-fiber frequency comb operating at a pulse repetition frequency of 375 MHz. The comb spacing was referenced to a Rb-stabilized microwave synthesizer and the comb offset was stabilized by generating a super-continuum containing a coherent component at 780.2 nm which was heterodyned with a (87)Rb-stabilized external cavity diode laser to produce a radio-frequency beat used to actuate the carrier-envelope offset frequency of the Yb-fiber laser. The two-sample frequency deviation of the locked comb was 235 kHz for an averaging time of 50 seconds, and the comb remained locked for over 60 minutes with a root mean squared deviation of 236 kHz.

3.
Opt Express ; 19(18): 17557-62, 2011 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-21935122

RESUMO

Sub-250-fs pulses with energies of up to 650 nJ and peak powers up to 2.07 MW were generated from a cavity-dumped optical parametric oscillator, synchronously-pumped at 15.3 MHz with sub-400-fs pulses from an Yb:fiber laser. The average beam quality factor of the dumped output was M2 ~1.2 and the total relative-intensity noise was 8 mdBc, making the system a promising candidate for ultrafast laser inscription of infrared materials.

4.
Rev Sci Instrum ; 81(5): 053101, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20515118

RESUMO

We describe a formal approach to the wavelength stabilization of a synchronously pumped ultrafast optical parametric oscillator using proportional-integral feedback control. Closed-loop wavelength stabilization was implemented by using a position-sensitive detector as a sensor and a piezoelectric transducer to modify the cavity length of the oscillator. By characterizing the frequency response of the loop components, we constructed a predictive model of the controller which showed formally that a proportional-only feedback was insufficient to eliminate the steady state error, consistent with experimental observations. The optimal proportional and integral gain coefficients were obtained from a numerical optimization of the controller model that minimized the settling time while also limiting the overshoot to an acceptable value. Results are presented showing effective wavelength and power stabilization to levels limited only by the relative intensity noise of the pump laser.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA